Jump to main content.

Contact Us

Health & Environmental Research Online (HERO)

You are here: EPA Home Research NCEA HERO Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol

Please wait while we submit your request.
This may take several minutes...


1118740 
Journal Article 
Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol 
Li, J; Gong, CM; Su, Y; Dou, HL; Liu, XJ 
2010 
Fuel
ISSN: 0016-2361 
Elsevier BV 
89 
12 
3919-3925 
Optimal injection and ignition timings and the effects of injection and ignition timings on performance and emissions from a high-compression direct-injection stratified charge spark-ignition methanol engine have been investigated experimentally. The results have shown that direct-injection spark-ignition methanol engine, in which a non-uniform mixture with a stratified distribution can be formed, has optimal injection and ignition timings to obtain a good combustion and low exhaust emissions in the overall mode range. Both methanol injection timing and ignition timing have a significant effect on methanol engine performance, combustion, and exhaust emissions. At an engine speed of 1600 rpm, full load, and optimal injection and ignition timings, methanol engine can obtain shorter ignition delay, lesser cycle-by-cycle variation, the maximum in-cylinder pressure, the maximum heat release rate, and higher thermal efficiency compared to the case of non-optimized injection and ignition timings. For methanol engine, the optimization of injection timing and ignition timing can lead to an improvement of brake-specific fuel consumption of more than 10% compared to non-optimized case in the overall load range and engine speed of 1600 rpm. The best compromise between thermal efficiency and exhaust emissions is reached at optimal injection and ignition timings. 
Spark-ignition methanol engine; Injection timing; Ignition timing; Performance; Emission 
IRIS
• Methanol (Non-Cancer)
     Search 2012
          WOS
          ProQuest
 

Jump to main content.

page loading graphic