Jump to main content.

Contact Us

Health & Environmental Research Online (HERO)

You are here: EPA Home Research NCEA HERO Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony

Please wait while we submit your request.
This may take several minutes...


607963 
Journal Article 
Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony 
Hinneburg, D; Renner, E; Wolke, R 
2009 
Environmental Science and Pollution Research
ISSN: 0944-1344
EISSN: 1614-7499 
16 
25-35 
English 
WOS:000262312900003 
The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of 'free' sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium-sulfate-nitrate-water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10 significantly exceed 15 mu gm(-3) at the surface. These extreme values are obtained in narrow plumes on intensive summer conditions, whereas different situations with lower turbulence (night, winter) remain below this value. About 90% of the PM10 concentrations in the plumes are secondarily formed sulfate, mainly ammonium sulfate, and about 10% originate from the primarily emitted particles. Under the assumptions made, ammonium nitrate plays a rather marginal role. The analyzed results depend on the specific emission data of power plants with flue gas emissions piped through the cooling towers. The emitted fraction of 'free' sulfate ions remaining in excess after the desulfurization steps plays an important role at the formation of secondary aerosols and therefore has to be measured carefully. 
Air pollution; Cooling towers; Plume rise; PM10; Power plant emissions; Secondary aerosols; Sulfate aerosol 
Aerosols 
 

Jump to main content.

page loading graphic