Health & Environmental Research Online (HERO)


ISA NOxSOxPM Ecology (2018)

Show Project Details Hide Project Details
3,342 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Estimating base cation weathering rates in the USA: challenges of uncertain soil mineralogy and specific surface area with applications of the profile model

Authors: Whitfield, CJ; Phelan, JN; Buckley, J; Clark, CM; Guthrie, S; Lynch, JA (2018) Water, Air, and Soil Pollution 229:61. HERO ID: 4288664


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Spatial variations in snowpack chemistry, isotopic composition of NO3- and nitrogen deposition from the ice sheet margin to the coast of western Greenland

Authors: Curtis, CJ; Kaiser, J; Marca, A; Anderson, NJ; Simpson, G; Jones, V; Whiteford, E (2018) Biogeosciences 15:529-550. HERO ID: 4354383

[Less] The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological . . . [More] The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological change in remote Arctic ecosystems, especially lakes, have been the subject of debate over the last decade. Some palaeoecological studies have cited isotopic signals (delta N-15)) preserved in lake sediments as evidence linking N deposition with ecological change, but a key limitation has been the lack of co-located data on both deposition input fluxes and isotopic composition of deposited nitrate (NO3-). In Arctic lakes, including those in western Greenland, previous palaeolimnological studies have indicated a spatial variation in delta(N-15) trends in lake sediments but data are lacking for deposition chemistry, input fluxes and stable isotope composition of NO3-. In the present study, snowpack chemistry, NO3- stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at eight locations within three lake catchments in each of three regions (ice sheet margin in the east, the central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181mm snow water equivalent (SWE) compared with 36mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl-, other major cations), ammonium (NH4+; regional means 1.4-2.7 mu mol L-1), total and non-sea-salt sulfate (SO42-; total 1.8-7.7, non-sea-salt 1.0-1.8 mu mol L-1/than the two inland regions. Nitrate (1.5-2.4 mu mol L-1/showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in greater net deposition for NO3- as well as NH4+ and non-sea-salt sulfate (nss-SO42-) relative to the inland regions (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17 and 11 mol ha(-1) a(-1) of NO3-, NH4+ and nss-SO42- respectively). The delta(N-15) of snowpack NO3- shows a significant decrease from inland regions (5.7 parts per thousand at Kelly Ville) to the coast (-11.3 parts per thousand). We attribute the spatial patterns of delta(N-15) in western Greenland to post-depositional processing rather than differing sources because of (1) spatial relationships with precipitation and sublimation, (2) within catchment isotopic differences between terrestrial snowpack and lake ice snowpack, and (3) similarities between fresh snow (rather than accumulated snowpack) at Kelly Ville and the coast. Hence the delta(N-15) of coastal snowpack is most representative of snowfall in western Greenland, but after deposition the effects of photolysis, volatilization and sublimation lead to enrichment of the remaining snowpack with the greatest effect in inland areas of low precipitation and high sublimation losses.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Atmospheric deposition and exceedances of critical loads from 1800-2025 for the conterminous United States

Authors: Clark, CM; Phelan, J; Doraiswamy, P; Buckley, J; Cajka, JC; Dennis, RL; Lynch, J; Nolte, CG; Spero, TL (2018) Ecological Applications. HERO ID: 4413232

[Less] Atmospheric deposition of nitrogen (N) and sulfur (S) has increased dramatically over pre-industrial . . . [More] Atmospheric deposition of nitrogen (N) and sulfur (S) has increased dramatically over pre-industrial levels, with many potential impacts on terrestrial and aquatic ecosystems. Quantitative thresholds, termed "critical loads" (CLs), have been developed to estimate the deposition rate above which damage is thought to occur. However, there remains no comprehensive comparison of when, where, and over what time periods individual CLs have been exceeded. We addressed this knowledge gap by combining several published data sources for historical and contemporary deposition, and overlaying these on six CL types from the National Critical Loads Database (NCLDv2.5; terrestrial acidification, aquatic acidification, lichen, nitrate leaching, plant community composition, and forest-tree health) to examine exceedances from 1800 to 2011. We expressed CLs as the minimum, 10th, and 50th percentiles within 12-km grid cells. Minimum CLs were relatively uniform across the country (200-400 eq·ha-1 ·yr-1 ), and have been exceeded for decades beginning in the early 20th century. The area exceeding minimum CLs peaked in the 1970s and 1980s, exposing 300,000 to 3 million km2 (depending on the CL type) to harmful levels of deposition, with a total area exceeded of 5.8 million km2 (~70% of the conterminous United States). Since then, deposition levels have dropped, especially for S, with modest reductions in exceedance by 2011 for all CL types, totaling 5.2 million km2 in exceedance. The 10th and 50th percentile CLs followed similar trends, but were not consistently available at the 12-km grid scale. We also examined near-term future deposition and exceedances in 2025 under current air quality regulations, and under various scenarios of climate change and additional nitrogen management controls. Current regulations were projected to reduce exceedances of any CL from 5.2 million km2 in 2011 to 4.8 million km2 in 2025. None of the additional N management or climate scenarios significantly affected areal exceedances, although exceedance severity declined. In total, it is clear that many CLs have been exceeded for decades, and are likely to remain so in the short term under current policies. Additionally, we suggest many areas for improvement to enhance our understanding of deposition and its effects to support informed decision making.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous

Authors: Horn, KJ; Thomas, RQ; Clark, CM; Pardo, LH; Fenn, ME; Lawrence, GB; Perakis, SS; Smithwick, EAH; Baldwin, D; Braun, S; Nordin, A; Perry, CH; Phelan, JN; Schaberg, PG; St. Clair, SB; Warby, R; Watmough, S (2018) PLoS ONE 13:Article #e0205296. HERO ID: 4997504

[Less] Atmospheric deposition of nitrogen (N) influences forest demographics and carbon (C) uptake through . . . [More] Atmospheric deposition of nitrogen (N) influences forest demographics and carbon (C) uptake through multiple mechanisms that vary among tree species. Prior studies have estimated the effects of atmospheric N deposition on temperate forests by leveraging forest inventory measurements across regional gradients in deposition. However, in the United States (U.S.), these previous studies were limited in the number of species and the spatial scale of analysis, and did not include sulfur (S) deposition as a potential covariate. Here, we present a comprehensive analysis of how tree growth and survival for 71 species vary with N and S deposition across the conterminous U.S. Our analysis of 1,423,455 trees from forest plots inventoried between 2000 and 2016 reveals that the growth and/or survival of the vast majority of species in the analysis (n = 66, or 93%) were significantly affected by atmospheric deposition. Species co-occurred across the conterminous U. S. that had decreasing and increasing relationships between growth (or survival) and N deposition, with just over half of species responding negatively in either growth or survival to increased N deposition somewhere in their range (42 out of 71). Averaged across species and conterminous U.S., however, we found that an increase in deposition above current rates of N deposition would coincide with a small net increase in tree growth (1.7% per Delta kg N ha(-1) yr(-1)), and a small net decrease in tree survival (-0.22% per Delta kg N ha(-1) yr(-1)), with substantial regional and among species variation. Adding S as a predictor improved the overall model performance for 70% of the species in the analysis. Our findings have potential to help inform ecosystem management and air pollution policy across the conterminous U.S., and suggest that N and S deposition have likely altered forest demographics in the U.S.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States

Authors: Mcdonnell, TC; Reinds, GJ; Sullivan, TJ; Clark, CM; Bonten, LTC; Mol-Dijkstra, JP; Wamelink, GWW; Dovciak, M (2018) Environmental Pollution 234:902-914. HERO ID: 4167086

[Less] Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions . . . [More] Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature and precipitation that will likely influence the effects of N deposition. To investigate the potential long-term impacts of atmospheric N deposition on hardwood forest ecosystems in the eastern United States in the context of climate change, application of the coupled biogeochemical and vegetation community model VSD+PROPS was explored at three sites in New Hampshire, Virginia, and Tennessee. This represents the first application of VSD+PROPS to forest ecosystems in the United States. Climate change and elevated (above mid-19th century) N deposition were simulated to be important factors for determining habitat suitability. Although simulation results suggested that the suitability of these forests to support the continued presence of their characteristic understory plant species might decline by the year 2100, low data availability for building vegetation response models with PROPS resulted in uncertain results at the extremes of simulated N deposition. Future PROPS model development in the United States should focus on inclusion of additional foundational data or alternate candidate predictor variables to reduce these uncertainties.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Global peak in atmospheric radiocarbon provides a potential definition for the onset of the anthropocene epoch in 1965

Authors: Turney, CSM; Palmer, J; Maslin, MA; Hogg, A; Fogwill, CJ; Southon, J; Fenwick, P; Helle, G; Wilmshurst, JM; McGlone, M; Bronk Ramsey, C; Thomas, Z; Lipson, M; Beaven, B; Jones, RT; Andrews, O; Hua, Q (2018) Scientific Reports 8:3293. HERO ID: 4270947

[Less] Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, . . . [More] Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the 'Anthropocene'. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric14C, demonstrating the 'bomb peak' in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II 'Great Acceleration' in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or 'golden spike', marking the onset of the Anthropocene Epoch.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Influence of experimental, environmental, and geographic factors on nutrient-diffusing substrate experiments in running waters: Supplementary materials

Authors: Beck, WS; Rugenski, AT; Poff, NL; (2017) Freshwater Biology 62. [Supplemental Data] HERO ID: 4154294

Abstract: Supplementary materials

Technical Report
Technical Report

Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2017 report to congress

Author: EPA (2017) HERO ID: 4152338


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Complexity in the biological recovery of Tatra Mountain lakes from acidification

Authors: Stuchlik, E; Bitusik, P; Hardekopf, DW; Horicka, Z; Kahounova, M; Tatosova, J; Vondrak, D; Dockalova, K (2017) Water, Air, and Soil Pollution 228. HERO ID: 4231971

[Less] Alpine lakes of the Tatra Mountains were severely affected by acidification, with minimum recorded values . . . [More] Alpine lakes of the Tatra Mountains were severely affected by acidification, with minimum recorded values of pH similar to 4.5 in the mid-1980s. Since the 1990s, a dramatic decrease in the deposition of acidifying compounds has led to a considerable reversal in lake water chemistry (to pH similar to 5 in the most severely affected lakes). We studied changes of planktonic crustaceans and chironomid occurrence during the acidification period and the following period of recovery from acidification in three categories of 50 Tatra Mountain lakes (non-acidified, acidified and strongly acidified, according to their status at the beginning of the 1980s). In acidified and strongly acidified lakes, the planktonic crustaceans completely disappeared already by about 1976 except for a few individuals of ubiquitous species in littoral zone due to acidification-induced oligotrophication. In strongly acidified lakes, the original planktonic crustaceans disappeared and littoral species became more abundant already before 1976 due to acidification-induced eutrophication and aluminium toxicity. These processes were quickly reversed following the increase in lake water pH. Extinct species started to return to several acidified and strongly acidified lakes already in the beginning of 1990s. The process of recovery was delayed in many other lakes of the same categories, however, or it did not even start before 2008 despite the improved water chemistry and feeding resources (concentration of chlorophyll-a). Compared to planktonic crustaceans, the reaction of chironomids to acidification and recent recovery has been less pronounced. An analysis of sediment records showed that fluctuations in relative abundance of the dominant chironomid taxa and a decrease of their density occurred. In spite of the fact that chironomid fauna exhibited clear signs of recovery in the last two decades, the recovered assemblage does not exactly reflect the pre-acidification status in the lake. The occurrence and higher proportion of more thermophilous chironomid species in some alpine lakes of all categories could be correlated with increasing air temperature. The considerable effect of climatic factors may thus prevent the full re-establishment of the original status even when the acidification stress completely ceases. The delayed return of planktonic crustaceans to some recovered lakes could be a consequence of the short water residence time of these lakes. In addition, a shortening of the water residence time in recent decades, probably related to recent climate change, in interaction with the ecology of planktonic crustaceans, may possibly be causing further delays in their return.

Journal Article
Journal Article

Physical and monetary ecosystem service accounts for Europe: A case study for in-stream nitrogen retention : Supplementary material

Authors: La Notte, A; Maes, J; Dalmazzone, S; Crossman, ND; Grizzetti, B; Bidoglio, G (2017) HERO ID: 4140317

Abstract: Supplementary materials