Health & Environmental Research Online (HERO)


PFBS (375-73-5)


654 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed

Authors: Zhang, W; Liang, Y (2020) Science of the Total Environment 724:138357. HERO ID: 6356904

[Less] Poly- and perfluoroalkyl substances (PFAS) are surfactants. Leveraging their surface active feature, . . . [More] Poly- and perfluoroalkyl substances (PFAS) are surfactants. Leveraging their surface active feature, this work investigated using aeration to remove perfluoroalkyl acids (PFAAs) from aqueous solutions. Eight PFAAs were spiked to either deionized water or Hoagland solution at three pHs. After 7 h of aeration, removals of perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorobutanesulfonic acid (PFBS), and perfluorohexanoic acid (PFHxA) were marginal and much lower than those of and perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS). In deionized water, close to 80% of PFOA and PFOS at 200 ppb were removed when the pH was 2.3. The Hoagland solution at pH 2.3 and 5.0 benefited removal of long-chain PFAS at 2 ppb, but not at 200 ppb. With duckweed growing on the Hoagland solution surface, >95% of PFHpA, PFHxS, PFOA, and PFOS at 200 ppb were removed after 2 weeks. Aeration enhanced duckweed uptake of PFHxS, PFOA, and PFOS at 2 ppb significantly. Specific to PFOS, duckweed accumulated 14.4% of this compound initially spiked at 2 ppb in 2 weeks. These results demonstrated that aeration plus duckweed could be a viable and scalable remediation solution for surface water contaminated by PFAS.

Journal Article
Journal Article

Hyphenated High Performance Liquid Chromatography-Tandem Mass Spectrometry Techniques for the Determination of Perfluorinated Alkylated Substances in Lombardia Region in Italy, Profile Levels and Assessment: One Year of Monitoring Activities During 2018

Authors: Barreca, S; Busetto, M; Colzani, L; Clerici, L; Marchesi, V; Tremolada, L; Daverio, D; Dellavedova, P (2020) HERO ID: 6392504

[Less] In this research paper, we report a hyphenated technique based on ultra-high performance liquid chromatography-tandem . . . [More] In this research paper, we report a hyphenated technique based on ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of twelve Perfluorinated Alkylated Substances in surface and groundwater samples from Lombardia Region during the monitoring activities in 2018 as new emerging and toxic pollutants. A green analytic method, developed by using an online Solid Phase Extraction coupled with UHPLC-MS/MS and previously validated, was applied for 4992 determinations conducted on 416 samples from 109 different sampling stations. Among the results, PFOS, PFOA, PFBA, PFBS, PFPeA and PFHxA were identified as the most abundant analytes detected. PFASs concentrations, in most cases, were below the limits of quantification and, in the cases where the limits of quantification have been exceeded, the values found were lower than Italy directive. PFOS is an exception and in fact this compound was detected in 76% of analyzed samples (surface and ground waters). Solid phase extraction with high performance liquid chromatography-tandem Mass Spectrometry has proved to be a very good Hyphenated techniques able to detect low concentrations of pollutants in surface and groundwater samples.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvents-based microextraction coupled with HPLC-Orbitrap HRMS

Authors: Liang, M; Xian, Y; Wang, B; Hou, X; Wang, L; Guo, X; Wu, Y; Dong, H (2020) HERO ID: 6416396

[Less] The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds . . . [More] The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds (PFCs) in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvent (SUPARS) vortex-mixed microextraction combined with high performance liquid chromatography-Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS). The SUPRAS without heating assistance is less solvent-consumption, meeting the requirements for green environmental protection and sustainable development. Parameters in the microextraction such as volume of dodecanol and tetrahydrofuran (THF), vortexing extraction and centrifugation time, salt concentration were investigated. The optimal extraction conditions were 250 μL of undecanol, 1.0 mL of THF and 20.0% (w/v, 4 g) NaCl. Under the optimum conditions, method limit of detection and method limit of quantitation in the ranges of 0.01-0.08 μg/L and 0.03-0.25 μg/L, good recoveries (72.5-117.8%) and intra-day precision (1.1-11.2%, n = 6), high enrichment factors (48-78) were obtained. The developed method was successfully applied for analysis of PFCs in 13 drinking water, tap water, river water and plant effluent samples collected from southern China. Perfluorobutane sulfonic acid was detected in one river water with concentration of 0.48 μg/L and 1H,1H,2H,2H-Perfluorooctane sulfonic acid was detected in one river water and two plant effluent samples with concentrations in the range of 0.14-0.67 μg/L.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Occurrence and partitioning behavior of per- and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China

Authors: Wang, S; Ma, L; Chen, C; Li, Y; Wu, Y; Liu, Y; Dou, Z; Yamazaki, E; Yamashita, N; Lin, BL; Wang, X (2020) Chemosphere 238:124578. HERO ID: 5918629

[Less] Twenty-four per- and polyfluoroalkyl substances (PFASs) were analyzed in water and sediment from the . . . [More] Twenty-four per- and polyfluoroalkyl substances (PFASs) were analyzed in water and sediment from the Jiulong Estuary-Xiamen Bay to study their seasonal variations, transport, partitioning behavior and ecological risks. The total concentration of PFASs in water ranged from 11 to 98 ng L-1 (average 45 ng L-1) during the dry season, 0.19-5.7 ng L-1 (average 1.5 ng L-1) during the wet season, and 3.0-5.4 ng g-1 dw (average 3.9 ng g-1 dw) in sediment. In water samples, short-chain PFASs were dominated by perfluorooctanoic acid (PFBA) in the dry season and perfluorobutane sulfonate (PFBS) in the wet season, while long chain PFASs, such as perfluorooctane sulfonate (PFOS), dominated in the sediment. The highest concentration of PFASs in water were found in the estuary; in contrast, the highest level of PFASs in sediment were found in Xiamen Bay. These spatial distributions of PFASs indicate that river discharge is the main source of PFASs in estuarine water, while the harbor, airport and wastewater treatment plant near Xiamen Bay may be responsible for the high PFBS and PFOS concentrations in water and sediment. The partition coefficients (log Kd) of PFASs between sediment and water (range from 1.64 to 4.14) increased with carbon chain length (R2 = 0.99) and also showed a positive relationship with salinity. A preliminary environmental risk assessment indicated that PFOS and perfluorooctanoic acid (PFOA) in water and sediment pose no significant ecological risk to organisms.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Application of zero-valent iron coupled with biochar for removal of perfluoroalkyl carboxylic and sulfonic acids from water under ambient environmental conditions

Authors: Liu, Y; Ptacek, CJ; Baldwin, RJ; Cooper, JM; Blowes, DW (2020) Science of the Total Environment 719:137372. HERO ID: 6315690

[Less] Advanced oxidation and reduction processes have been intensively investigated as potential methods to . . . [More] Advanced oxidation and reduction processes have been intensively investigated as potential methods to promote the decomposition of perfluoroalkyl substances (PFASs). However, extreme operational conditions such as highly acidic pH, high temperature, and high pressure are required to promote degradation reactions, which makes these technologies costly and less feasible for full-scale applications. The objective of this study was to evaluate the effectiveness of zero-valent iron (ZVI) alone and a mixture of ZVI and biochar (ZVI + BC) for removal of seven target PFASs from water under ambient environmental conditions. Target PFASs included three perfluoroalkyl carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA, C8-PFCA), perfluoroheptanoic acid (C7-PFCA), and perfluorohexanoic acid (C6-PFCA)] and four perfluoroalkyl sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS, C8-PFSA), perfluoroheptane sulfonic acid (C7-PFSA), perfluorohexane sulfonic acid (C6-PFSA), and perfluorobutane sulfonic acid (C4-PFSA)]. Batch test results show that PFSAs (up to 94% removal) were more effectively removed than PFCAs (up to 60% removal) when utilizing either ZVI or (ZVI + BC). About 20-60% of input PFOA (~18,550 μg L-1) and 90-94% of input PFOS (~18,580 μg L-1) were removed by ZVI alone or the mixture of (ZVI + BC). The removal efficiencies of PFCAs and PFSAs by reactive media increased with increasing chain length, from 0 to 17% for short-chain PFCAs (C6-C7) and 20 to 70% for short-chain PFSAs (C4-C7). About 5-10% of input PFOA and PFOS was partially defluorinated by ZVI alone as indicated by F- release; however, the defluorination efficiency may be underestimated due to the sorption of F- by the reactive media. Overall, the reactive mixture (ZVI + BC) may be an effective and environmentally sustainable material for removing PFASs from water under ambient environmental conditions.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells

Authors: Liu, S; Yang, R; Yin, N; Faiola, F (2020) HERO ID: 6392503

[Less] Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are typical per- and poly-fluorinated . . . [More] Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are typical per- and poly-fluorinated alkyl substances (PFASs) that epidemiological studies have already associated with diabetes. However, insufficient data on their toxicity have been reported to explain any mechanism of action, which could justify such an association. Meanwhile, short-chain PFASs designed to substitute PFOA and PFOS, have already raised increasing concerns for their biosafety. Here, we evaluated whether common PFASs affected pancreatic and endocrine cell development using a human pluripotent stem cell pancreatic induction model and human pancreatic progenitor cell (hPP) endocrine induction model. The short-chain PFASs, pentafluorobenzoic acid, perfluorohexanoic acid, perfluorobutanesulfonic acid, and perfluorohexanesulfonic acid, homologous to PFOA or PFOS, did not significantly disrupt hPP generation, unlike PFOA and PFOS, based on pancreatic and duodenal homeobox 1 (PDX1) expression. However, SRY box 9 (SOX9) expression was suppressed in PDX1+ hPPs. All six PFASs did not disrupt SOX9 expression or hPP proliferation. However, endocrine differentiation of hPPs was affected, as indicated by neurogenin-3 (NGN3) downregulation, owing to abnormal increases in SOX9 and hairy and enhancer of split-1 (HES1) expressions. Thus, hyperactivation of NOTCH signaling was repressed after hPPs committed to the endocrine lineage. In conclusion, our study demonstrates how powerful human pluripotent stem cell-based pancreatic differentiation models can be in developmental toxicity evaluations, compared to traditional toxicity assays, mostly based on live animals. Moreover, our findings suggest that PFASs may alter pancreatic development after the pancreatic domain emerges from the gut tube, and provide insights into their toxicity mechanisms.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Unexpected observations: Probiotic administration greatly aggravates the reproductive toxicity of perfluorobutanesulfonate in zebrafish

Authors: Tang, L; Song, S; Hu, C; Lam, JC; Liu, M; Zhou, B; Lam, PKS; Chen, L (2020) HERO ID: 6416398

[Less] The present study exposed adult zebrafish to 0, 10 and 100 μg/L PFBS with or without dietary supplement . . . [More] The present study exposed adult zebrafish to 0, 10 and 100 μg/L PFBS with or without dietary supplement of probiotic Lactobacillus rhamnosus. Interaction between probiotic and PFBS on sex endocrine and reproduction was investigated. It was striking to find that PFBS and probiotic coexposures almost ceased the fecundity, which was accompanied by disturbances in sex hormones and oocyte maturation in females. In contrast, probiotic additive efficiently antagonized the estrogenic activity of PFBS in males. For the first time, this study reported that probiotic heavily depended on sex to modulate the endocrine disruption and reproductive toxicity of aquatic pollutants.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Binding specificities of estrogen receptor with perfluorinated compounds: A cross species comparison

Authors: Qiu, Z; Qu, K; Luan, F; Liu, Y; Zhu, Y; Yuan, Y; Li, H; Zhang, H; Hai, Y; Zhao, C (2020) HERO ID: 6304523

[Less] BACKGROUND: Perfluorinated compounds (PFCs) were reported to result in the endocrine . . . [More] BACKGROUND: Perfluorinated compounds (PFCs) were reported to result in the endocrine disruption by activating the estrogen receptor (ER) and inducing ER-mediated transcriptions.

OBJECTIVE: The aim of the present work was to perform cross-species comparisons on the characteristics of eight PFCs binding to humans ERα and to rats ERα.

METHODS: In the present work, in vivo tests, including serum estradiol level assay and immunohistochemical staining, fluorescence assay and molecular models were applied.

RESULTS: Based on the in vivo experiments, the exposure of PFOA and PFOS to female rats was proved to increase the ERα expression in the terus, suggesting that PFCs may act as estrogenic compounds to activate ERα in vivo. The further fluorescence assay presented that these eight PFCs have stronger binding abilities to human ERα than to rat ERα. In addition, the differences in binding specificities between human ERα and rat ERα were identified in the process of molecular dynamics modeling with the term of helix position and the ability of coregulator recruitment. It can be found that more and stronger charge clamps could form between PFCs with human ERα than with rat ERα. Also, the eight PFCs presented lower binding energies in human ERα systems, which proved that eight PFCs presented much stronger binding abilities with human ERα.

DISCUSSION: In all, it can be concluded that PFCs might be more sensitive to human ERα than to that of rats, which also suggested the greater susceptibility to adverse effects on humans. The present work was a beginning assessment of a cross-species comparison, providing important information on health impacts of PFCs in humans.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Activation of human nuclear receptors by perfluoroalkylated substances (PFAS)

Authors: Behr, AC; Plinsch, C; Braeuning, A; Buhrke, T (2020) Toxicology In Vitro 62:104700. HERO ID: 6305866

[Less] Perfluoralkylated substances (PFAS) such as perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic . . . [More] Perfluoralkylated substances (PFAS) such as perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) are used to produce, e.g., surface coatings with water- and dirt-repellent properties. These substances have been shown to be hepatotoxic in rodents, and the mechanism of action is mostly attributed to the PFAS-mediated activation of the peroxisome proliferator-activated receptor alpha (PPARα). In the present study, we investigated by using luciferase-based reporter gene assays whether PFOA, PFOS and six alternative PFAS can activate, in addition to PPARα, eight other human nuclear receptors. All tested PFAS except for perfluorobutanesulfonic acid (PFBS) were able to activate human PPARα. Perfluoro-2-methyl-3-oxahexanoic acid (PMOH) and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were weak agonists of human PPARγ. The other human nuclear receptors (PPARδ, CAR, PXR, FXR, LXRα, RXRα and RARα) were not affected by any PFAS tested in this study. Although PMOH was more effective than PFOA in stimulating PPARα in the transactivation assay, it was less effective in stimulating PPARα-dependent target gene expression in human HepG2 hepatocarcinoma cells. Notably, any effect observed in this in vitro study only occurred at concentrations higher than 10 μM of the respective PFAS which is in all cases several magnitudes above the average blood concentration in the Western population. Thus, the results suggest that nuclear receptor activation may only play a minor role in potential PFAS-mediated adverse effects in humans.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration

Authors: Gagliano, E; Sgroi, M; Falciglia, PP; Vagliasindi, FGA; Roccaro, P (2020) Water Research 171:115381. [Review] HERO ID: 6315699

[Less] Poly- and perfluoroalkyl substances (PFAS) are a wide group of environmentally persistent organic compounds . . . [More] Poly- and perfluoroalkyl substances (PFAS) are a wide group of environmentally persistent organic compounds of industrial origin, which are of great concern due to their harmful impact on human health and ecosystems. Amongst long-chain PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most detected in the aquatic environment, even though their use has been limited by recent regulations. Recently, more attention has been posed on the short-chain compounds, due to their use as an alternative to long-chain ones, and to their high mobility in the water bodies. Therefore, short-chain PFAS have been increasingly detected in the environmental compartments. The main process investigated and implemented for PFAS removal is adsorption. However, to date, most adsorption studies have focused on synthetic water. The main objective of this article is to provide a critical review of the recent peer-reviewed studies on the removal of long- and short-chain PFAS by adsorption. Specific objectives are to review 1) the performance of different adsorbents for both long- and short-chain PFAS, 2) the effect of organic matter, and 3) the adsorbent regeneration techniques. Strong anion-exchange resins seem to better remove both long- and short-chain PFAS. However, the adsorption capacity of short-chain PFAS is lower than that observed for long-chain PFAS. Therefore, short-chain PFAS removal is more challenging. Furthermore, the effect of organic matter on PFAS adsorption in water or wastewater under real environmental conditions is overlooked. In most studies high PFAS levels have been often investigated without organic matter presence. The rapid breakthrough of PFAS is also a limiting factor and the regeneration of PFAS exhausted adsorbents is very challenging and needs more research.