Health & Environmental Research Online (HERO)


ISA NOxSOxPM Ecology (2018)

Show Project Details Hide Project Details
2,967 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

Authors: Beier, CM; Caputo, J; Lawrence, GB; Sullivan, TJ (2017) Journal of Environmental Management 191:19-27. HERO ID: 3604254

[Less] Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will . . . [More] Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha(-1) in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Impacts of Acidification and Potential Recovery on the Expected Value of Recreational Fisheries in Adirondack Lakes (USA)

Authors: Caputo, J; Beier, CM; Fakhraei, H; Driscoll, CT (2017) HERO ID: 3546245

[Less] We estimated the potential economic value of recreational fisheries in lakes altered by acid pollution . . . [More] We estimated the potential economic value of recreational fisheries in lakes altered by acid pollution in the Adirondack Mountains (USA). We found that the expected value of recreational fisheries has been diminished because of acid deposition but may improve as lakes recover from acidification under low emissions scenarios combined with fish stocking. Fishery value increased with lake pH, from a low of $4.41 angler day(-1) in lakes with pH < 4.5, to a high of $38.40 angler day(-1) in lakes with pH > 6.5 that were stocked with trout species. Stocking increased the expected fishery value by an average of $11.50 angler day(-1) across the entire pH range of the lakes studied. Simulating the future long-term trajectory of a subset of lakes, we found that pH and expected fishery value increased over time in all future emissions scenarios. Differences in estimated value among pollution reduction scenarios were small (<$1 angler day(-1)) compared to fish stocking scenarios (>$4 angler day(-1)). Our work provides a basis for assessing the costs and benefits of emissions reductions and management efforts that can hasten recovery of the economic and cultural benefits of ecosystems degraded by chronic pollution.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Peatland plant communities under global change: negative feedback loops counteract shifts in species composition

Authors: Hedwall, PO; Brunet, J; Rydin, H (2017) HERO ID: 3546421

[Less] Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially . . . [More] Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially sensitive to nitrogen deposition and climate change. The role of mires in the global carbon cycle, and the delivery of different ecosystem services can be considerably altered by changes in the vegetation, which has a strong impact on peat-formation and hydrology. Mire ecosystems are commonly open with limited canopy cover but both nitrogen deposition and increased temperatures may increase the woody vegetation component. It has been predicted that such an increase in tree cover and the associated effects on light and water regimes would cause a positive feed-back loop with respect to the ground vegetation. None of these effects, however, have so far been confirmed in large-scale spatiotemporal studies. Here we analyzed data pertaining to mire vegetation from the Swedish National Forest Inventory collected from permanent sample plots over a period of 20 yr along a latitudinal gradient covering 14°. We hypothesized that the changes would be larger in the southern parts as a result of higher nitrogen deposition and warmer climate. Our results showed an increase in woody vegetation with increases in most ericaceous dwarf-shrubs and in the basal area of trees. These changes were, in contrast to our expectations, evenly distributed over most of the latitudinal gradient. While nitrogen deposition is elevated in the south, the increase in temperatures during recent decades has been larger in the north. Hence, we suggest that different processes in the north and south have produced similar vegetation changes along the latitudinal gradient. There was, however, a sharp increase in compositional change at high deposition, indicating a threshold effect in the response. Instead of a positive feed-back loop caused by the tree layer, an increase in canopy cover reduced the changes in composition of the ground vegetation, whereas a decrease in canopy cover lead to larger changes. Increased natural disturbances of the tree layer due to, for example, pathogens or climate is a predicted outcome of climate change. Hence, these results may have important implications for predictions of long-term effects of increased temperature on peatland vegetation.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Light asymmetry explains the effect of nutrient enrichment on grassland diversity

Authors: Demalach, N; Zaady, E; Kadmon, R (2017) HERO ID: 3546864

[Less] One of the most ubiquitous patterns in plant ecology is species loss following nutrient enrichment. . . . [More] One of the most ubiquitous patterns in plant ecology is species loss following nutrient enrichment. A common explanation for this universal pattern is an increase in the size asymmetry of light partitioning (the degree to which large plants receive more light per unit biomass than smaller plants), which accelerates the rates of competitive exclusions. This 'light asymmetry hypothesis' has been confirmed by mathematical models, but has never been tested in natural communities due to the lack of appropriate methodology for measuring the size asymmetry of light partitioning in natural communities. Here, we use a novel approach for quantifying the asymmetry of light competition which is based on measurements of the vertical distribution of light below the canopy. Using our approach, we demonstrate that an increase in light asymmetry is the main mechanism behind the negative effect of nutrient enrichment on species richness. Our results provide a possible explanation for one of the main sources of contemporary species loss in terrestrial plant communities.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland

Authors: Wang, R; Dorodnikov, M; Dijkstra, FA; Yang, S; Xu, Z; Li, Hui; Jiang, Y (2017) Biology and Fertility of Soils 53:129-140. HERO ID: 3546916

[Less] We investigated whether enhanced nitrogen (N) and water inputs would redistribute the microbial community . . . [More] We investigated whether enhanced nitrogen (N) and water inputs would redistribute the microbial community within different soil aggregate size classes in a field manipulation experiment initiated in 2005. Distribution of microbial groups was monitored in large macroaggregates (> 2000 mu m), small macroaggregates (250-2000 mu m), and microaggregates (< 250 mu m) in a semiarid grassland. Both arbuscular mycorrhizal (AM) fungi and saprophytic fungi were the most abundant in soil macroaggregates. The gram-negative bacteria were more abundant in soil microaggregates. Total phospholipid fatty acid (PLFA) concentration in general and actinomycetes in particular decreased with N addition under ambient precipitation but was unaffected by combined additions of N and water within the three soil aggregate fractions as compared to control plots. In contrast, the abundance of saprophytic fungi decreased with combined N and water addition, but it was not affected by N addition under ambient precipitation. The abundance of gram-positive bacteria increased with N addition under both ambient and elevated water conditions for all soil aggregate fractions. In summary, the higher short-term nutrient and water availabilities provoked a shift in soil microbial community composition and increased total PLFA abundance irrespectively of the level of soil aggregation. In the long term, this could destabilize soil carbon pools and influence the nutrient limitation of soil biota within different soil aggregate size classes under future global change scenarios.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Impacts to ecosystem services from aquatic acidification: using FEGS-CS to understand the impacts of air pollution

Authors: O'Dea, CB; Anderson, S; Sullivan, T; Landers, D; Casey, CF (2017) Ecosphere 8. HERO ID: 3872938

[Less] Increases in anthropogenic emissions of sulfur (S) and nitrogen (N) have resulted in increases in the . . . [More] Increases in anthropogenic emissions of sulfur (S) and nitrogen (N) have resulted in increases in the associated atmospheric deposition of acidic compounds. In sensitive watersheds, this deposition has initiated a cascade of negative environmental effects on aquatic ecosystems, resulting in a degradation or loss of valuable ecosystem goods and services. Here, we report the activities of an expert workgroup to synthesize information on acidic deposition-induced aquatic acidification from the published literature and to link critical load exceedances with ecosystem services and beneficiaries, using the Stressor-Ecological Production function-Final Ecosystem Services (STEPS) Framework and the Final Ecosystem Goods and Services Classification System (FEGS-CS). Experts identified and documented the sensitive aquatic ecosystem ecological endpoints valued by humans, and the environmental pathways through which these endpoints may experience degradation in response to acidification. Beneficiary groups were then identified for each sensitive ecological endpoint to clarify relationships between humans and the effects of aquatic acidification, and to lay the foundation for future research and analysis to value these FEGS.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression

Authors: Wu, Q; Han, X; Wang, Di; Zhao, F; Wang, D (2017) HERO ID: 3873282

[Less] We employed an in vivo assay system of Caenorhabditis elegans to determine if and which microRNAs (miRNAs) . . . [More] We employed an in vivo assay system of Caenorhabditis elegans to determine if and which microRNAs (miRNAs) were dysregulated upon exposure to coal combustion related fine particulate matter (PM2.5) by profiling the miRNAs using SOLiD sequencing. From this, expression of 25 miRNAs was discovered to become dysregulated by exposure to PM2.5. Using the corresponding C. elegans deletion mutants, 5 miRNAs (mir-231, mir-232, mir-230, mir-251 and mir-35) were found to be involved in the control of PM2.5 toxicity. Furthermore, mutation of mir-231 or mir-232 induced a resistance to PM2.5 toxicity, whereas mutation of mir-230, mir-251, or mir-35 induced a susceptibility to PM2.5 toxicity. SMK-1, an ortholog of the mammalian SMEK protein, was identified as a molecular target for mir-231 in the regulation of PM2.5 toxicity. In addition, the genes of sod-3, sod-4 and ctl-3, which are necessary for protection against oxidative stress, were determined to be important downstream targets of smk-1 in the regulation of PM2.5 toxicity. The triggering of this mir-231-SMK-1-SOD-3/SOD-4/CTL-3 signaling pathway may be a critical molecular basis for the role of oxidative stress in the induction of coal combustion related PM2.5 toxicity.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Native brook trout and invasive rainbow trout respond differently to seasonal weather variation: Spawning timing matters

Authors: Kanno, Y; Kulp, MA; Moore, SE; Grossman, GD (2017) HERO ID: 4170688

[Less] 1. Salmonids have been introduced globally, and native and invasive salmonids co-exist in many regions. . . . [More] 1. Salmonids have been introduced globally, and native and invasive salmonids co-exist in many regions. However, their responses to seasonal weather variation and global climate change are poorly known.

2. The aim of this study was to compare effects of inter-annual variation in seasonal weather patterns on native brook trout (BKT) (Salvelinus fontinalis) versus invasive rainbow trout (RBT) (Oncorhynchus mykiss) abundance using summer electrofishing data (May through September) spanning 28 years in the Great Smoky Mountains National Park, U.S.A. (c. 200 stream sites per species). In particular, we tested if different spawning timing between BKT (autumn) and RBT (late winter) would result in heterogeneous population responses to high seasonal precipitation, which would negatively affect early life stages with impaired swimming ability.

3. As predicted, young-of-the-year (YOY) abundance of autumn-spawning BKT was most strongly impacted by total precipitation between February and March, and RBT YOY abundance was most strongly impacted by peak precipitation between April and May. Despite the presence of these different key seasonal drivers, inter-annual variation in YOY density of these two species was positively correlated because precipitation in April and May also impacted the abundance of BKT YOY.

4. Adult abundance was less responsive to weather variation than YOY abundance, and was most strongly correlated with YOY abundance in the previous year, indicating the importance of flow-driven population control influences on early life stages affecting population sizes into subsequent years. Adult BKT densities were not affected by any weather covariate, whereas adult RBT densities were correlated with four weather covariates in competing models. As a result, there was no correlation in the inter-annual variation in adult density in these two species.

5. The differing responses of BKT and RBT to long-term seasonal weather patterns suggest that they will likely respond differently to global climate change. In particular, winter precipitation will likely be the key environmental driver of differences in their population responses.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Sensitivity and uncertainty analysis of PnET-BGC to inform the development of Total Maximum Daily Loads (TMDLs) of acidity in the Great Smoky Mountains National Park

Authors: Fakhraei, HK; Driscoll, CT; Kulp, MA; Renfro, JR; Blett, TF; Brewer, PF; Schwartz, JS (2017) Environmental Modelling and Software 95:156-167. HERO ID: 4170700

[Less] The biogeochemical model, PnET-BGC, has been used to evaluate the long-term acid-base response of surface . . . [More] The biogeochemical model, PnET-BGC, has been used to evaluate the long-term acid-base response of surface waters to changes in atmospheric acid deposition. We propose a methodology to identify the input factors of greatest model sensitivity and propagate uncertainty of input factors to model outputs. The quantified model uncertainty enabled application of an "exceedance probability" approach to determine allowable atmospheric deposition in the form of Total Maximum Daily Loads (TMDLs) for twelve acid-impaired streams in Great Smoky Mountains National Park. Results indicate that acidification of surface water resulting from acidic deposition has been substantial. Even if current atmospheric deposition is reduced to pre-industrial levels, only one of the twelve impaired streams might be recovered to its site-specific standard by 2050. Our sensitivity analysis indicates that the model is most sensitive to precipitation quantity, air temperature and calcium weathering rate, and suggests further research to improve characterization of these inputs. (C) 2017 Elsevier Ltd. All rights reserved.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Particulate matter accumulation - further differences between native Prunus padus and non-native P.serotina

Authors: Popek, R; Lukowski, A; Karolewski, P (2017) HERO ID: 4172395

[Less] Particulate matter (PM) is one of the most harmful inhaled pollutants. Where pollutants have been emitted . . . [More] Particulate matter (PM) is one of the most harmful inhaled pollutants. Where pollutants have been emitted into the atmosphere, the most effective method for cleaning the air is through phytoremediation, whereby plants act as biological filters. PM has a negative impact on plants, but knowledge of PM effects on the photosynthetic apparatus is limited. In European forests, species of the genus Prunus L. play a key role in the composition of the forest understory and urban as well as industrial plantings. Shrubs of the native P. padus L. and closely-related invasive alien P. serotina Ehrh. are particularly widespread. Thus, both are good model species in which to study the impact of PM pollution.

The aim of this study was to assess the accumulation of PM in the context of leaf morphology and amount of epicuticular waxes on foliage, and the efficiency of the photosynthetic apparatus of P. padus and P. serotina. The study was conducted under controlled conditions using two variants of dust, cement and roadside PM. In addition, we analyzed the absorption of dust by leaves dividing it into three fractions by size (10-100 mu m, 2.5-10 mu m and 0.2-2.5 mu m). Results showed that both P. padus and P. serotina accumulate PM mostly on the surface of their leaves (SPM), rather than in the wax layer (WPM). P. padus accumulated higher amounts of PM than did P. serotina. The higher presence of PM on leaves of P. padus resulted in a reduction of the efficiency of the photosynthetic apparatus, manifested by lower rates of photosynthesis and chlorophyll a fluorescence, coinciding with an increased stomatal resistance. A strong negative correlation was found between the amount of PM accumulation and the efficiency of the photosynthetic apparatus in P. padus, but not in P. serotina. We have concluded that alien P. serotina is more tolerant to the conditions of stress caused by PM pollution than is the native P. padus, which may partly explain its success in the invasion in Europe.