Health & Environmental Research Online (HERO)


ISA-PM (current)


137 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Assessment of estrogenic and androgenic activity in PM10 air samples from an urban, industrial and rural area in Flanders (Belgium) using the CALUX bioassay

Authors: Croes, K; Van den Heuvel, R; Van den Bril, B; Staelens, J; Denison, MS; Van Langenhove, K; Vandermarken, T; Elskens, M (2016) Environmental Research 150:66-72. HERO ID: 3358348

[Less] BACKGROUND: Endocrine disrupting chemicals represent a broad class of compounds, are . . . [More] BACKGROUND: Endocrine disrupting chemicals represent a broad class of compounds, are widespread in the environment and can pose severe health effects.

OBJECTIVES: The objective of this study was to investigate and compare the overall estrogen and androgen activating potential of PM10 air samples at an urban, rural and industrial location in Flanders, using a human in vitro cell bioassay.

METHODS: PM10 samples were collected on glass fiber filters every six days between April 2013 and January 2014 using a high-volume sampler. Extraction was executed with a hexane/acetone mixture before analysis using a recombinant estrogen- or androgen responsive human carcinoma cell line. Results were expressed as bioanalytical equivalents (BEQs) per cubic meter of air.

RESULTS: High fluctuations in estrogenic activity were observed during the entire sampling period, with median BEQs of 32.1, 35.9 and 31.1 fg E2-Eq m(-)³ in the industrial, urban and rural background area, respectively. Estrogenic activity was measured in 70% of the samples, while no androgenic activity was observed in any of the samples. The estrogenic activity in the industrial area was positively correlated with the airborne concentration of the sum of the non-carcinogenic PAHs pyrene and fluoranthene (rho=0.48; p<0.01) and the sum of the carcinogenic PAHs (rho=0.36; p=0.05).

CONCLUSIONS: This study showed that no androgenic activity was present in PM10 and that although the median estrogenic activity was rather low and comparable in the three locations, high fluctuations in estrogenic response exist over time. While atmospheric PAHs contributed to the observed estrogenic response, especially in the industrial area, the chemicals responsible for the majority of estrogenic activity remain to be identified.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Time Course of Heart Rate Variability Response to PM2.5 Exposure from Secondhand Smoke

Authors: Garza, JL; Mittleman, MA; Zhang, J; Christiani, DC; Cavallari, JM (2016) PLoS ONE 11:e0154783. HERO ID: 3358697

[Less] PURPOSE: Exposure to secondhand smoke (SHS) has been associated with decreased heart . . . [More] PURPOSE: Exposure to secondhand smoke (SHS) has been associated with decreased heart rate variability (HRV). However, the time course of this association is unclear. Therefore, the objective of this study was to investigate the association between 15-240 minute SHS-related fine particulate matter (PM2.5) moving averages and indices of HRV.

METHODS: With a panel study design, we used personal monitors to continuously measure PM2.5 and HRV of 35 participants who were exposed to SHS for approximately 6 hours.

RESULTS: We observed negative, significant associations between 5-minute HRV indices and 15 minute PM2.5 moving averages and 240 minute PM2.5 moving averages: there was a significant (p<0.01) 7.5% decrease in the 5-minute square root of the mean squared differences of successive normal heart beats associated with (RMSSD), and a significant (p<0.01) 14.7% decrease in the 5-minute high frequency (HF) power associated with the 15 minute PM2.5 moving averages; there was also a significant (p<0.01) 46.9% decrease in the 5-minute RMSSD, and a significant (p<0.01) 77.7% decrease in the 5-minute high frequency (HF) power associated with the 240 minute PM2.5 moving averages.

CONCLUSIONS: Our findings that exposure to SHS related PM2.5 was associated with HRV support the hypothesis that SHS can affect the cardiovascular system. The negative associations reported between short and longer term PM2.5 and HRV indicate adverse effects of SHS on the cardiovascular system.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity

Authors: Everaere, L; Ait-Yahia, S; Molendi-Coste, O; Vorng, H; Quemener, S; Levu, P; Fleury, S; Bouchaert, E; Fan, Y; Duez, C; de Nadai, P; Staels, B; Dombrowicz, D; Tsicopoulos, A (2016) Journal of Allergy and Clinical Immunology 138:1309-1318.e11. HERO ID: 3359022

[Less] BACKGROUND: Epidemiologic and clinical observations identify obesity as an important . . . [More] BACKGROUND: Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR).

OBJECTIVE: We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity.

METHODS: Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs.

RESULTS: HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and TH2 and TH17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including TH2 and TH17 infiltration.

CONCLUSION: These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Fine particulate matter air pollution and atherosclerosis: Mechanistic insights

Authors: Bai, Y; Sun, Q (2016) Biochimica et Biophysica Acta 1860:2863-2868. HERO ID: 3359249

[Less] BACKGROUND: Atherosclerosis is a progressive disease characterized by the accumulation . . . [More] BACKGROUND: Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous plaque in the arteries. Its etiology is very complicated and its risk factors primarily include genetic defects, smoking, hyperlipidemia, hypertension, lack of exercise, and infection. Recent studies suggest that fine particulate matter (PM2.5) air pollution may also contribute to the development of atherosclerosis.

SCOPE OF REVIEW: The present review integrates current experimental evidence with mechanistic pathways whereby PM2.5 exposure can promote the development of atherosclerosis.

MAJOR CONCLUSIONS: PM2.5-mediated enhancement of atherosclerosis is likely due to its pro-oxidant and pro-inflammatory effects, involving multiple organs, different cell types, and various molecular mediators.

GENERAL SIGNIFICANCE: Studies about the effects of PM2.5inhalation on atherosclerosis may yield a better understanding of the link between air pollution and major cardiovascular diseases, and provide useful information for policy makers to determine acceptable levels of PM2.5 air quality. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andy Ghio and Weidong Wu.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

microRNA-802/Rnd3 pathway imposes on carcinogenesis and metastasis of fine particulate matter exposure

Authors: Li, X; Lv, Y; Gao, N; Sun, H; Lu, R; Yang, H; Zhang, C; Meng, Q; Wu, S; Li, AQ; Xia, Y; Chen, R (2016) Oncotarget 7:35026-35043. HERO ID: 3359354

[Less] Recent studies have linked ambient fine particulate matter (PM2.5) to increased lung cancer mortality . . . [More] Recent studies have linked ambient fine particulate matter (PM2.5) to increased lung cancer mortality and morbidity. However, the underlying mechanism causing the adverse effects of PM2.5 is less clear. In the present study, post-transcriptional profiling was used to explore biological pathways involved in PM2.5-induced pulmonary disorders. The carcinogenesis and metastasis of PM2.5 exposure were evaluated by long-term PM2.5 exposure tests. We observed dysregulation of actin in A549 cells line and dysplasia in the lungs of mice exposed to PM2.5. Both PM2.5-exposed cells and animals showed increased Rnd3 expression levels. Moreover, miR-802 mimics rescued actin disorganization in vitro and alveolitis in vivo. Long-term exposure to PM2.5 promoted carcinogenesis and metastasis of pulmonary cells. Decreased miR-802 expression levels in the serum samples of PM2.5-treated mice and individuals from moderately polluted cities were observed. Increased Rnd3 expression levels in lung cancers tissues have been identified by a genome database TCGA, and have been linked to less overall survival probabilities of lung cancer patients. Our findings suggest that dysregulation of actin cytoskeleton and down-regulation of miR-802 expression might be the underlying mechanism involved in the adverse effects of PM2.5 exposure. In addition, long-term exposure to PM2.5 demonstrated strong associations with malignant pulmonary disorders.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Quantifying the impact of PM2.5 and associated heavy metals on respiratory health of children near metallurgical facilities

Authors: Dunea, D; Iordache, S; Liu, HY; Bøhler, T; Pohoata, A; Radulescu, C (2016) Environmental Science and Pollution Research 23:15395-15406. HERO ID: 3359646

[Less] The aim of this study was to link the concentrations of particulate matter with an aerodynamic diameter . . . [More] The aim of this study was to link the concentrations of particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5) and associated heavy metals with occurrence of wheezing and hospitalizations due to wheezing in 111 children who live near metallurgical plants in Targoviste City, Romania. A group of 72 children with high levels of immunoglobulin E (IgE) and eosinophils, as well as frequent wheezing episodes, was geolocated on digital thematic maps. Monitoring campaigns and medical assessments were performed over two consecutive years (2013-2014). The multiannual average concentrations of PM2.5 ranged from 4.6 to 22.5 μg m(-3), up to a maximum value of 102 μg m(-3). Significant correlations (p < 0.01) were observed between the locations of the children with respiratory issues and the PM2.5 multiannual average (r = 0.985) and PM2.5 maximum (r = 0.813). Fe, Ni, Cd, and Cr were the main marker elements of the emissions from steel production and metal-working facilities in the Targoviste area. The results support the hypothesis that increased PM2.5 levels directly influence wheezing symptom and asthma attacks in the analyzed group. IgE, eosinophils, and wheezing episodes may be considered key indicators with which to evaluate the adverse effects of PM2.5 air pollution on children's health.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers

Authors: Lane, KJ; Levy, JI; Scammell, MK; Peters, JL; Patton, AP; Reisner, E; Lowe, L; Zamore, W; Durant, JL; Brugge, D (2016) HERO ID: 3359761

[Less] BACKGROUND: Long-term exposure to fine particulate matter has been linked to cardiovascular . . . [More] BACKGROUND: Long-term exposure to fine particulate matter has been linked to cardiovascular disease and systemic inflammatory responses; however, evidence is limited regarding the effects of long-term exposure to ultrafine particulate matter (UFP, <100nm). We used a cross-sectional study design to examine the association of long-term exposure to near-highway UFP with measures of systemic inflammation and coagulation.

METHODS: We analyzed blood samples from 408 individuals aged 40-91years living in three near-highway and three urban background areas in and near Boston, Massachusetts. We conducted mobile monitoring of particle number concentration (PNC) in each area, and used the data to develop and validate highly resolved spatiotemporal (hourly, 20m) PNC regression models. These models were linked with participant time-activity data to determine individual time-activity adjusted (TAA) annual average PNC exposures. Multivariable regression modeling and stratification were used to assess the association between TAA-PNC and single peripheral blood measures of high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor-necrosis factor alpha receptor II (TNFRII) and fibrinogen.

RESULTS: After adjusting for age, sex, education, body mass index, smoking and race/ethnicity, an interquartile-range (10,000particles/cm(3)) increase in TAA-PNC had a positive non-significant association with a 14.0% (95% CI: -4.6%, 36.2%) positive difference in hsCRP, an 8.9% (95% CI: -0.4%, 10.9%) positive difference in IL-6, and a 5.1% (95% CI: -0.4%, 10.9%) positive difference in TNFRII. Stratification by race/ethnicity revealed that TAA-PNC had larger effect estimates for all three inflammatory markers and was significantly associated with hsCRP and TNFRII in white non-Hispanic, but not East Asian participants. Fibrinogen had a negative non-significant association with TAA-PNC.

CONCLUSIONS: Our findings suggest an association between annual average near-highway TAA-PNC and subclinical inflammatory markers of CVD risk.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Effects of Air Pollution and Blood Mitochondrial DNA Methylation on Markers of Heart Rate Variability

Authors: Byun, HM; Colicino, E; Trevisi, L; Fan, T; Christiani, DC; Baccarelli, AA (2016) Journal of the American Heart Association 5. HERO ID: 3359764

[Less] BACKGROUND: The mitochondrion is the primary target of oxidative stress in response . . . [More] BACKGROUND: The mitochondrion is the primary target of oxidative stress in response to exogenous environments. Mitochondrial DNA (mtDNA) is independent from nuclear DNA and uses separate epigenetic machinery to regulate mtDNA methylation. The mtDNA damage induced by oxidative stress can cause mitochondrial dysfunction and is implicated in human diseases; however, mtDNA methylation has been largely overlooked in environmental studies relating to human disease. The purpose of this study was to examine the association between exposure to fine metal-rich particulates (particulate matter <2.5 µm in diameter [PM2.5]) from welding in a boilermaker union and blood mtDNA methylation in relation to heart rate variability.

METHODS AND RESULTS: Forty-eight healthy men were recruited on multiple sampling cycles at the Boilermaker Union Local 29, located in Quincy, Massachusetts. We measured personal PM2.5 in the background ambient environment. We measured blood mtDNA methylation in the mtDNA promoter (D-loop) and genes essential for ATP synthesis (MT-TF and MT-RNR1) by bisulfite pyrosequencing. All analyses were adjusted for demographics, type of job, season, welding-work day, and mtDNA methylation experimental batch effect. The participants' PM2.5 exposure was significantly higher after a welding-work day (mean 0.38 mg/m(3)) than the background personal level (mean 0.15 mg/m(3), P<0.001). Blood mtDNA methylation in the D-loop promoter was associated with PM2.5 levels (β=-0.99%, SE=0.41, P=0.02). MT-TF and MT-RNR1 methylation was not associated with PM2.5 exposure (β=0.10%, SE=0.45, P=0.82). Interaction of PM2.5 exposure levels and D-loop promoter methylation was significantly associated with markers of heart rate variability.

CONCLUSIONS: Blood mtDNA methylation levels were negatively associated with PM2.5 exposure and modified the adverse relationships between PM2.5 exposure and heart rate variability outcomes.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Effect of atmospheric fine particles on epidermal growth factor receptor mRNA expression in mouse skin tissue

Authors: Han, X; Liang, WL; Zhang, Y; Sun, LD; Liang, WY (2016) Genetics and Molecular Research 15. HERO ID: 3360224

[Less] We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) . . . [More] We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) mRNA expression in mouse skin tissue and explored the effect of atmospheric fine particles on skin aging. Forty female BALB/c mice were randomly divided into four groups (each comprising 10 mice) as follows: a saline control group and low-, medium-, and high-dose atmospheric fine particle groups (1.6, 8.0, and 40.0 mg/kg, respectively) (fine particles were defined as those with a diameter of £2.5 mm, i.e., PM2.5). Each dose group was exposed to intratracheal instillation for 3 days. Twenty-four hours after the last exposure, real-time quantitative polymerase chain reaction was used to detect the expression of Egfr mRNA in the skin tissue of each mouse. The expression levels of Egfr mRNA in the medium- and high-dose PM2.5 groups were significantly higher (P < 0.05) than that in the control group, and were positively correlated with the dose. Medium and high concentrations of PM2.5 can induce the expression of Egfr mRNA and promote skin aging.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials

Authors: Møller, P; Christophersen, DV; Jacobsen, NR; Skovmand, A; Gouveia, AC; Andersen, MH; Kermanizadeh, A; Jensen, DM; Danielsen, PH; Roursgaard, M; Jantzen, K; Loft, S (2016) Critical Reviews in Toxicology 46:437-476. HERO ID: 3360425

[Less] Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading . . . [More] Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient air, diesel exhaust and certain nanomaterials on atherosclerosis and vasomotor function in animals have been assessed. The majority of studies have used pulmonary exposure by inhalation or instillation, although there are some studies on non-pulmonary routes such as the gastrointestinal tract. Airway exposure to air pollution particles and nanomaterials is associated with similar effects on atherosclerosis progression, augmented vasoconstriction and blunted vasorelaxation responses in arteries, whereas exposure to diesel exhaust is associated with lower responses. At present, there is no convincing evidence of dose-dependent effects across studies. Oxidative stress and inflammation have been observed in the arterial wall of PM-exposed animals with vasomotor dysfunction or plaque progression. From the data, it is evident that pulmonary and systemic inflammation does not seem to be necessary for these vascular effects to occur. Furthermore, there is inconsistent evidence with regard to altered plasma lipid profile and systemic inflammation as a key step in vasomotor dysfunction and progression of atherosclerosis in PM-exposed animals. In summary, the results show that certain nanomaterials, including TiO2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM.