Health & Environmental Research Online (HERO)


Nanoscale Carbon

Show Project Details Hide Project Details
11,320 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Probing Microscopic Wetting Properties of Superhydrophobic Surfaces by Vibrated Micrometer-Sized Droplets

Authors: Jonáš, A; Karadag, Y; Tasaltin, N; Kucukkara, I; Kiraz, A (In Press) Langmuir. HERO ID: 738618

[Less] We determine contact angles of micrometer-sized NaCl-water droplets on superhydrophobic surfaces by . . . [More] We determine contact angles of micrometer-sized NaCl-water droplets on superhydrophobic surfaces by analyzing their lowest-order axisymmetric vibrational resonances driven by vertical oscillations of the surface. Fluorescence spectra of the dye-doped droplets excited by laser light feature whispering-gallery modes (WGMs) whose spectral widths depend on the droplet vibration amplitude, thus enabling precise measurements of the droplet mechanical resonant frequency. Following droplet size determination by WGM mode-matching, we calculate the contact angles from the dependence of the measured mechanical resonant frequency on the droplet size for two surfaces with different superhydrophobicity levels, and find a good correlation with the values measured by direct imaging of millimeter-sized droplets.

Journal Article
Journal Article

Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nano-beta-TCP synthesized via microwave treatment

Authors: Abdel-Fattah, WI; Elkhooly, TA (In Press) . HERO ID: 751533

[Less] The degradation and/or apatite layer precipitation ability of porous beta-tricalcium phosphate (beta-TCP) . . . [More] The degradation and/or apatite layer precipitation ability of porous beta-tricalcium phosphate (beta-TCP) samples treated and untreated with microwave radiation during synthesis is investigated. Microwave heating was used to accelerate the formation of CDHA with the Ca/P ratio 1.5 in a shorter processing time which later forms beta-TCP at around 650 degrees C. Soaking in simulated body fluid (SBF) for several periods (4, 8, 12, 24, 36, 48, 60 and 72 h) is performed in a cumulative manner. The deposition of an apatite layer is followed through diffuse reflected FT-IR, SEM and EDS. A microwave-treated sample having a smaller particle size than its parent induces the formation of a homogeneous carbonated apatite layer on its surface. On the other hand, the parent beta-TCP sample exhibited less ability to induce Ca-P formation after being soaked in SBF. The formation of an apatite layer is attributed to the increase in surface area consequent to reduced particle and grain sizes besides the presence of a minor amount of hydroxyapatite phase in the microwave-treated beta-TCP sample. The results prove that it is possible to control the biodegradation and apatite layer formation on sintered beta-TCP porous disks through controlling the particle size.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Chromonic Liquid Crystalline Phases of Pinacyanol Acetate: Characterization and Use as Templates for the Preparation of Mesoporous Silica Nanofibers

Authors: Rodríguez-Abreu, C; Torres, CA; Tiddy, GJ (In Press) Langmuir. HERO ID: 738511

[Less] We report on the self-aggregation of the cationic dye pinacyanol acetate and its use for the preparation . . . [More] We report on the self-aggregation of the cationic dye pinacyanol acetate and its use for the preparation of nanostructured silica via templated sol-gel reaction. The dye forms nematic and hexagonal chromonic liquid crystals at low concentrations in water (i.e., from 0.75 wt %); the type of counterion appears to play an important role in liquid crystal formation. From analysis of small X-ray scattering (SAXS) curves, it is inferred that dye aggregates have the morphology of hollow long tubes with one-molecule-thick walls; the diameter of the tubes does not to change much with concentration. The dye aggregates can be aligned by shear or by a magnetic field. The high-resolution (1)H NMR spectra show that aggregation takes place over a range of concentrations rather than having a sharp "critical" aggregation. Within the aggregates the conjugated moiety, including the three-carbon link, is in close proximity to the aromatic groups of stack neighbors. On the other hand, dye aggregates direct the formation of silica nanofibers synthesized via sol-gel reaction, mimicking the elongated structures found in aqueous media. The nanofibers show a hierarchical organization; i.e., they contain hexagonal arrays of 3 nm cylindrical mesopores left after calcination of the templating molecules, and the pore walls are 2.7 nm thick. As the nanofibers form entangled networks, the obtained materials also show interparticle porosity. The present findings open new possibilities for the use of commercial cationic dyes in the synthesis of nanostructured materials.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Carbon, nitrogen and O(2) fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea

Authors: Ploug, H; Adam, B; Musat, N; Kalvelage, T; Lavik, G; Wolf-Gladrow, D; Kuypers, MM (In Press) ISME Journal: Multidisciplinary Journal of Microbial Ecology. HERO ID: 752028

[Less] Photosynthesis, respiration, N(2) fixation and ammonium release were studied directly in Nodularia spumigena . . . [More] Photosynthesis, respiration, N(2) fixation and ammonium release were studied directly in Nodularia spumigena during a bloom in the Baltic Sea using a combination of microsensors, stable isotope tracer experiments combined with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorometry. Cell-specific net C- and N(2)-fixation rates by N. spumigena were 81.6±6.7 and 11.4±0.9 fmol N per cell per h, respectively. During light, the net C:N fixation ratio was 8.0±0.8. During darkness, carbon fixation was not detectable, but N(2) fixation was 5.4±0.4 fmol N per cell per h. Net photosynthesis varied between 0.34 and 250 nmol O(2) h(-1) in colonies with diameters ranging between 0.13 and 5.0 mm, and it reached the theoretical upper limit set by diffusion of dissolved inorganic carbon to colonies (>1 mm). Dark respiration of the same colonies varied between 0.038 and 87 nmol O(2) h(-1), and it reached the limit set by O(2) diffusion from the surrounding water to colonies (>1 mm). N(2) fixation associated with N. spumigena colonies (>1 mm) comprised on average 18% of the total N(2) fixation in the bulk water. Net NH(4)(+) release in colonies equaled 8-33% of the estimated gross N(2) fixation during photosynthesis. NH(4)(+) concentrations within light-exposed colonies, modeled from measured net NH(4)(+) release rates, were 60-fold higher than that of the bulk. Hence, N. spumigena colonies comprise highly productive microenvironments and an attractive NH(4)(+) microenvironment to be utilized by other (micro)organisms in the Baltic Sea where dissolved inorganic nitrogen is limiting growth.The ISME Journal advance online publication, 10 March 2011; doi:10.1038/ismej.2011.20.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Fullerene sorting proteins

Authors: Calvaresi, M; Zerbetto, F (In Press) Nanoscale. HERO ID: 752068

[Less] Proteins bind fullerenes. Hydrophobic pockets can accommodate a carbon cage either in full or in part. . . . [More] Proteins bind fullerenes. Hydrophobic pockets can accommodate a carbon cage either in full or in part. However, the identification of proteins able to discriminate between different cages is an open issue. Prediction of candidates able to perform this function is desirable and is achieved with an inverse docking procedure that accurately accounts for (i) van der Waals interactions between the cage and the protein surface, (ii) desolvation free energy, (iii) shape complementarity, and (iv) minimization of the number of steric clashes through conformational variations. A set of more than 1000 protein structures is divided into four categories that either select C(60) or C(70) (p-C(60) or p-C(70)) and either accommodate the cages in the same pocket (homosaccic proteins, from σακκoζ meaning pocket) or in different pockets (heterosaccic proteins). In agreement with the experiments, the KcsA Potassium Channel is predicted to have one of the best performances for both cages. Possible ways to exploit the results and efficiently separate the two cages with proteins are also discussed.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Imaging Carbon Nanotube Interactions, Diffusion, and Stability in Nanopores

Authors: Eichmann, SL; Smith, B; Meric, G; Fairbrother, DH; Bevan, MA (In Press) ACS Nano. HERO ID: 752194

[Less] We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled . . . [More] We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Enhanced Wetting Behavior at Electrospun Polyamide Nanofiber Surfaces

Authors: Stachewicz, U; Barber, AH (In Press) Langmuir. HERO ID: 738444

[Less] Nanofibers of polyamide have been synthesized using electrospinning processes and their wetting properties . . . [More] Nanofibers of polyamide have been synthesized using electrospinning processes and their wetting properties determined directly from a nanoscale Wilhelmy balance approach. Individual electrospun polyamide nanofibers were attached to atomic force microscope (AFM) tips and immersed in a range of organic liquids with varying polar and dispersive surface tension components. AFM was used to measure nanofiber-liquid wetting forces and derive contact angles using Wilhelmy balance theory. Owens-Wendt plots were used to show a considerable increase in the polar component of the surface free energy of the polyamide nanofibers compared with bulk film of the same polymer. Chemical surface analysis of the polyamide nanofibers and films using X-ray photoelectron spectroscopy provided evidence for enhanced availability of polar oxygen groups at the electrospun nanofiber surface relative to the film. Our results therefore confirm chemical group orientation at the electrospun polyamide nanofiber surface that promotes availability of polar groups for enhanced wetting behavior.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Surface Structures and Electrochemical Activities of Pt Overlayers on Ir Nanoparticles

Authors: Lee, KS; Yoo, SJ; Ahn, D; Jeon, TY; Choi, KH; Park, IS; Sung, YE (In Press) Langmuir. HERO ID: 738603

[Less] Pt overlayers were deposited on carbon-supported Ir nanoparticles with various coverages. Structural . . . [More] Pt overlayers were deposited on carbon-supported Ir nanoparticles with various coverages. Structural and electrochemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction, high-resolution powder diffraction (HRPD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), cyclic voltammetry (CV), CO stripping voltammetry, and N(2)O reduction. The surface of Ir nanoparticles was covered with Pt overlayers with thickness varying from the submonolayer scale to more than two monolayers. Surface analyses such as CV and CO stripping voltammetry indicated that the Pt overlayers were uniformly deposited on the Ir nanoparticles, and the resultant Pt overlayers exhibited gradual changes in surface characteristics toward the Pt surface as the surface coverage increased. The distinct CO stripping characteristics and the enhanced Pt utilization affected electrocatalytic activities for methanol oxidation. The electrochemical stability of the Pt overlayer was compared with a commercial carbon-supported Pt catalyst by conducting a potential cycling experiment.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Bioengineering Single Crystal Growth

Authors: Wu, CH; Park, A; Joester, D (In Press) Journal of the American Chemical Society. HERO ID: 738655

[Less] Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic . . . [More] Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Preparation of Water-Soluble Magnetic Nanocrystals Using Aryl Diazonium Salt Chemistry

Authors: Griffete, N; Herbst, F; Pinson, J; Ammar, S; Mangeney, C (In Press) Journal of the American Chemical Society. HERO ID: 738697

[Less] A novel and facile methodology for the in situ surface functionalization of Fe(3)O(4) nanoparticles . . . [More] A novel and facile methodology for the in situ surface functionalization of Fe(3)O(4) nanoparticles is proposed, based on the use of aryl diazonium salts chemistry. The grafting reaction involves the formation of diazoates in a basic medium. These species are unstable and dediazonize along a homolytic pathway to give aryl radicals which further react with the Fe(3)O(4) NPs during their formation and stop their growth. Advantages of the present approach rely not only on the simplicity, rapidity, and efficiency of the procedure but also on the formation of strong Fe(3)O(4)-aryl surface bonds, highly suitable for further applications.