Health & Environmental Research Online (HERO)


Nanoscale Carbon

Show Project Details Hide Project Details
11,320 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Imaging Carbon Nanotube Interactions, Diffusion, and Stability in Nanopores

Authors: Eichmann, SL; Smith, B; Meric, G; Fairbrother, DH; Bevan, MA (In Press) ACS Nano. HERO ID: 752194

[Less] We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled . . . [More] We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Carcinoembryonic Antigen Admittance Biosensor Based on Au and ZnO Nanoparticles Using FFT Admittance Voltammetry

Authors: Norouzi, P; Gupta, VK; Faridbod, F; Pirali-Hamedani, M; Larijani, B; Ganjali, MR (In Press) Analytical Chemistry. HERO ID: 738524

[Less] In this work, a highly sensitive carcinoembryonic antigen fast Fourier transform admittance biosensor . . . [More] In this work, a highly sensitive carcinoembryonic antigen fast Fourier transform admittance biosensor is introduced. The proposed biosensor is based on bilayer films of ZnO/Au nanoparticles as an immobilization matrix. These layers are prepared by self-assembly and deposition method on a gold electrode surface, respectively. Carcinoembryonic antibody (anti-CEA) was immobilized on gold nanoparticles and positively charged horseradish peroxidase (HRP) was used to block sites against nonspecific binding. The admittance biosensor was developed based on fast Fourier transform continuous square wave voltammetry, which produces a sensitive, fast (less than 20 s) and reliable response for determination of carcinoembryonic antigen. The technique was applied as a detector in a flow injection system. The admittances reduction current of the biosensor decreases linearly in two concentrations ranges of CEA from 0.1 to 70 ng/mL and from 70 to 200 ng/mL with a detection limit of 0.01 ng/mL in presence of 0.5 mM H(2)O(2) as an eluent solution.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Scalable Assembly Method of Vertically-Suspended and Stretched Carbon Nanotube Network Devices for Nanoscale Electro-Mechanical Sensing Components

Authors: Lee, BY; Heo, K; Bak, JH; Cho, SU; Moon, S; Park, YD; Hong, S (In Press) Nano Letters. HERO ID: 750839

[Less] For the first time, vertically suspended and stretched carbon nanotube network junctions were fabricated . . . [More] For the first time, vertically suspended and stretched carbon nanotube network junctions were fabricated in large quantity via the directed assembly strategy using only conventional microfabrication facilities. In this process, surface molecular patterns on the side -wall of the Al structures were utilized to guide the assembly and alignment of carbon nanotubes in the solution. We also performed extensive experimental (electrical and mechanical) analysis and theoretical simulation about the vertically suspended single-walled carbon nanotube network junctions. The junctions exhibited semiconductor-like conductance behavior. Furthermore, we demonstrated gas sensing and electromechanical sensing using these devices.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Improved adherence and spreading of Saos-2 cells on polypropylene surfaces achieved by surface texturing and carbon nitride coating

Authors: Myllymaa, K; Myllymaa, S; Korhonen, H; Lammi, MJ; Saarenpää, H; Suvanto, M; Pakkanen, TA; Tiitu, V; Lappalainen, R (In Press) Journal of Materials Science: Materials in Medicine. HERO ID: 751105

[Less] The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized . . . [More] The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized on smooth, microstructured (MST) and micro- and nano-structured (MNST) polypropylene (PP) and on the same samples with a silicon-doped carbon nitride (C(3)N(4)-Si) coating. Injection molding was used to pattern the PP surfaces and the coating was obtained by using ultra-short pulsed laser deposition (USPLD). Surfaces were characterized using atomic force microscopy and surface energy components were calculated according to the Owens-Wendt model. The results showed C(3)N(4)-Si coated surfaces to be significantly more hydrophilic than uncoated ones. In addition, there were 86% more cells in the smooth C(3)N(4)-Si coated PP compared to smooth uncoated PP and 551%/476% more cells with MST/MNST C(3)N(4)-Si coated PP than could be obtained with MST/MNST uncoated PP. Thus the adhesion, spreading and contact guidance of osteoblast-like cells was effectively improved by combining surface texturing and deposition of osteocompatible C(3)N(4)-Si coating.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

SiRNA delivery with functionalized carbon nanotubes

Authors: Varkouhi, AK; Foillard, S; Lammers, T; Schiffelers, RM; Doris, E; Hennink, WE; Storm, G (In Press) International Journal of Pharmaceutics. HERO ID: 751982

[Less] Carbon nanotubes (CNTs) have been studied for drug, antigen and nucleic acid delivery both in vitro . . . [More] Carbon nanotubes (CNTs) have been studied for drug, antigen and nucleic acid delivery both in vitro and in vivo. Due to their nano-needle structure, they are supposed to cross the plasma membrane and enter directly into the cytoplasm likely upon an endocytosis-independent mechanism without inducing cell death. In this study, two cationically functionalized CNTs (CNT-PEI and CNT-pyridinium) were investigated for siRNA delivery. Both functionalized CNTs complexed siRNA and showed 10-30% silencing activity and a cytotoxicity of 10-60%. However, in terms of reduced toxicity or increased silencing activity, CNT-PEI and CNT-pyridinium did not show an added value over PEI and other standard transfection systems. Probably, the type of functionalization of carbon nanotubes might be a key parameter to obtain an efficient and non-cytotoxic CNT-based delivery system. Nevertheless, in view of the present results and importantly also of the non-degradability of CNTs, preference should currently be given to designing biodegradable carriers which mimic the needle structure of CNTs.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Multifunctional p-phosphonated calixarenes

Authors: Martin, AD; Raston, CL (In Press) Chemical Communications. [Review] HERO ID: 752178

[Less] p-Phosphonic acid calix[n]arenes and their O-alkylated lower rim analogues are remarkably versatile . . . [More] p-Phosphonic acid calix[n]arenes and their O-alkylated lower rim analogues are remarkably versatile macrocycles, with applications in selective diameter uptake of single walled carbon nano-tubes, as surfactants in stabilising and protecting nano-particles and graphene sheets, as crystal growth modifiers for inorganic systems, in encapsulating molecules of anti-cancer carboplatin, self assembly into nano-arrays, including nano-fibres and molecular capsules, and for binding metal ions including biologically relevant Ca(2+). They are readily accessible via five or six high yielding steps from the parent p-Bu(t) substituted compounds.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Carbon nanospheres for highly sensitive electrochemical detection of sequence-specific protein-DNA interactions

Authors: He, X; Xu, J; Liu, Y; Peng, R; Lee, ST; Kang, Z (In Press) Chemical Communications. HERO ID: 752200

[Less] A carbon nanosphere-based electrochemical detection method is developed for the highly sensitive detection . . . [More] A carbon nanosphere-based electrochemical detection method is developed for the highly sensitive detection of Sp1-DNA interactions.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Nanoporous TiO(2) spheres with narrow pore size distribution and improved visible light photocatalytic abilities

Authors: Ming, H; Ma, Z; Huang, H; Lian, S; Li, H; He, X; Yu, H; Pan, K; Liu, Y; Kang, Z (In Press) Chemical Communications. HERO ID: 752204

[Less] Nanoporous TiO(2) nanospheres with excellent visible light photocatalytic abilities and narrow pore . . . [More] Nanoporous TiO(2) nanospheres with excellent visible light photocatalytic abilities and narrow pore size (11 ± 1 nm) distribution can be obtained via a rapid vapor assisted hydrolysis technique.

Journal Article
Journal Article

Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nano-beta-TCP synthesized via microwave treatment

Authors: Abdel-Fattah, WI; Elkhooly, TA (In Press) . HERO ID: 751533

[Less] The degradation and/or apatite layer precipitation ability of porous beta-tricalcium phosphate (beta-TCP) . . . [More] The degradation and/or apatite layer precipitation ability of porous beta-tricalcium phosphate (beta-TCP) samples treated and untreated with microwave radiation during synthesis is investigated. Microwave heating was used to accelerate the formation of CDHA with the Ca/P ratio 1.5 in a shorter processing time which later forms beta-TCP at around 650 degrees C. Soaking in simulated body fluid (SBF) for several periods (4, 8, 12, 24, 36, 48, 60 and 72 h) is performed in a cumulative manner. The deposition of an apatite layer is followed through diffuse reflected FT-IR, SEM and EDS. A microwave-treated sample having a smaller particle size than its parent induces the formation of a homogeneous carbonated apatite layer on its surface. On the other hand, the parent beta-TCP sample exhibited less ability to induce Ca-P formation after being soaked in SBF. The formation of an apatite layer is attributed to the increase in surface area consequent to reduced particle and grain sizes besides the presence of a minor amount of hydroxyapatite phase in the microwave-treated beta-TCP sample. The results prove that it is possible to control the biodegradation and apatite layer formation on sintered beta-TCP porous disks through controlling the particle size.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

SWNT Nucleation from Carbon-Coated SiO(2) Nanoparticles via a Vapor-Solid-Solid Mechanism

Authors: Page, AJ; Chandrakumar, KR; Irle, S; Morokuma, K (In Press) Journal of the American Chemical Society. HERO ID: 751895

[Less] Since the discovery of single-walled carbon nanotubes (SWNTs) in the early 1990s, the most commonly . . . [More] Since the discovery of single-walled carbon nanotubes (SWNTs) in the early 1990s, the most commonly accepted model of SWNT growth on traditional catalysts (i.e., transition metals including Fe, Co, Ni, etc.) is the vapor-liquid-solid (VLS) mechanism. In more recent years, the synthesis of SWNTs on nontraditional catalysts, such as SiO(2), has also been reported. The precise atomistic mechanism explaining SWNT growth on nontraditional catalysts, however, remains unknown. In this work, CH(4) chemical vapor deposition (CVD) and single-walled carbon nanotube (SWNT) nucleation on SiO(2) nanoparticles have been investigated using quantum-chemical molecular dynamics (QM/MD) methods. Upon supply of CH(x) species to the surface of a model SiO(2) nanoparticle, CO was produced as the main chemical product of the CH(4) CVD process, in agreement with a recent experimental investigation [Bachmatiuk et al., ACS Nano 2009, 3, 4098]. The production of CO occurred simultaneously with the carbothermal reduction of the SiO(2) nanoparticle. However, this reduction, and the formation of amorphous SiC, was restricted to the nanoparticle surface, with the core of the SiO(2) nanoparticle remaining oxygen-rich. In cases of high carbon concentration, SWNT nucleation then followed, and was driven by the formation of isolated sp(2)-carbon networks via the gradual coalescence of adjacent polyyne chains. These simulations indicate that the carbon saturation of the SiO(2) surface was a necessary prerequisite for SWNT nucleation. These simulations also indicate that a vapor-solid-solid mechanism, rather than a VLS mechanism, is responsible for SWNT nucleation on SiO(2). Fundamental differences between SWNT nucleation on nontraditional and traditional catalysts are therefore observed.