Health & Environmental Research Online (HERO)


Nanoscale Carbon

Show Project Details Hide Project Details
23 References Were Found:

Data/Software
Data/ Software

ChemIDplus - a TOXNET database

Author: ChemIDplus (2018) National Institutes of Health, U.S. Library of Medicine. HERO ID: 4235826


Data/Software
Data/ Software

ChemIDplus - a TOXNET database

Author: NLM (2016) Bethesda, MD: National Institutes of Health, U.S. Library of Medicine. HERO ID: 2991424


Technical Report
Technical Report

Carbon nanotubes: Exposure, toxicology and protective measures in the work environment

Authors: Gustavsson, P; Hedmer, M; Rissler, J (2011) HERO ID: 1090804


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Environmental and health effects of nanomaterials in nanotextiles and façade coatings

Authors: Som, C; Wick, P; Krug, H; Nowack, B (2011) Environment International 37:1131-1142. [Review] HERO ID: 752037

[Less] Engineered nanomaterials (ENM) are expected to hold considerable potential for products that offer improved . . . [More] Engineered nanomaterials (ENM) are expected to hold considerable potential for products that offer improved or novel functionalities. For example, nanotechnologies could open the way for the use of textile products outside their traditional fields of applications, for example, in the construction, medical, automobile, environmental and safety technology sectors. Consequently, nanotextiles could become ubiquitous in industrial and consumer products in future. Another ubiquitous field of application for ENM is façade coatings. The environment and human health could be affected by unintended release of ENM from these products. The product life cycle and the product design determine the various environmental and health exposure situations. For example, ENM unintentionally released from geotextiles will probably end up in soils, whereas ENM unintentionally released from T-shirts may come into direct contact with humans and end up in wastewater. In this paper we have assessed the state of the art of ENM effects on the environment and human health on the basis of selected environmental and nanotoxicological studies and on our own environmental exposure modeling studies. Here, we focused on ENM that are already applied or may be applied in future to textile products and façade coatings. These ENM's are mainly nanosilver (nano-Ag), nano titanium dioxide (nano-TiO(2)), nano silica (nano-SiO(2)), nano zinc oxide (nano-ZnO), nano alumina (nano-Al(2)O(3)), layered silica (e.g. montmorillonite, Al(2)[(OH)(2)/Si(4)O(10)]nH(2)O), carbon black, and carbon nanotubes (CNT). Knowing full well that innovators have to take decisions today, we have presented some criteria that should be useful in systematically analyzing and interpreting the state of the art on the effects of ENM. For the environment we established the following criteria: (1) the indication for hazardous effects, (2) dissolution in water increases/decreases toxic effects, (3) tendency for agglomeration or sedimentation, (4) fate during waste water treatment, and (5) stability during incineration. For human health the following criteria were defined: (1) acute toxicity, (2) chronic toxicity, (3) impairment of DNA, (4) crossing and damaging of tissue barriers, (5) brain damage and translocation and effects of ENM in the (6) skin, (7) gastrointestinal or (8) respiratory tract. Interestingly, some ENM might affect the environment less severely than they might affect human health, whereas the case for others is vice versa. This is especially true for CNT. The assessment of the environmental risks is highly dependent on the respective product life cycles and on the amounts of ENM produced globally.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Carbon nanotube mass production: principles and processes

Authors: Zhang, Q; Huang, JQ; Zhao, MQ; Qian, WZ; Wei, F (2011) ChemSusChem 4:864-889. [Review] HERO ID: 1060397

[Less] Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the . . . [More] Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the most important advanced materials. This Review describes the state-of-the-art of CNT synthesis, with a focus on their mass-production in industry. At the nanoscale, the production of CNTs involves the self-assembly of carbon atoms into a one-dimensional tubular structure. We describe how this synthesis can be achieved on the macroscopic scale in processes akin to the continuous tonne-scale mass production of chemical products in the modern chemical industry. Our overview includes discussions on processing methods for high-purity CNTs, and the handling of heat and mass transfer problems. Manufacturing strategies for agglomerated and aligned single-/multiwalled CNTs are used as examples of the engineering science of CNT production, which includes an understanding of their growth mechanism, agglomeration mechanism, reactor design, and process intensification. We aim to provide guidelines for the production and commercialization of CNTs. Although CNTs can now be produced on the tonne scale, knowledge of the growth mechanism at the atomic scale, the relationship between CNT structure and application, and scale-up of the production of CNTs with specific chirality are still inadequate. A multidisciplinary approach is a prerequisite for the sustainable development of the CNT industry.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

PBDD/F impurities in some commercial deca-BDE

Authors: Ren, M; Peng, P; Cai, Y; Chen, D; Zhou, L; Chen, P; Hu, J (2011) Environmental Pollution 159:1375-1380. HERO ID: 1003965

[Less] The study presented the concentrations and distributions of polybrominated dibenzo-p-dioxins and polybrominated . . . [More] The study presented the concentrations and distributions of polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) as impurities in some commercial decabromodiphenyl ether (DBDE) mixtures that were produced by several manufacturers. The total concentrations of 12 2,3,7,8-substituted tetra- to octa-BDD/F congeners were found to be in the range of 3.4-13.6 (mean 7.8) μg/g, averagely accounting for 99% of total PBDD/Fs. OBDF was the prevailing congener, followed by 1,2,3,4,6,7,8-HpBDF. In addition, OBDD and 1,2,3,4,7,8-HxBDF were also obviously detectable. The total concentrations of PBDD/Fs varied both between the manufacturers and between the lots. On the basis of the global demand for the commercial DBDE in 2001, the annual potential emissions of PBDD/Fs were calculated coarsely to be 0.43 (range: 0.21-0.78) tons. The major dioxin congeners, OBDF and 1,2,3,4,6,7,8-HpBDF, presenting in DBDE, were estimated to be formed from BDE-209, BDE-206, and/or BDE-207 via an intra-molecular elimination of Br2/HBr.

Data/Software
Data/ Software

ChemIDPlus

Author: NLM (2011) Bethesda, MD: National Institutes of Health, U.S. Library of Medicine. [Database] HERO ID: 629639

Abstract: Dictionary of over 400,000 chemicals (names, synonyms, and structures)

Dissertation/Thesis
Dissertation Thesis

Design and simulation of cumene plant using aspen plus

Author: Mahapatra, N. (2010) National Institute of Technology Rourkela, Rourkela, Odisha, India. HERO ID: 1065567

[Less] Cumene production process is gaining importance and so the process needs to be studied and better ideas . . . [More] Cumene production process is gaining importance and so the process needs to be studied and better ideas suggested such that the production cost is reduced. With the advent of computers and simulating software like ASPEN PLUS® it is possible to design and optimize a particular process. Proper design can significantly reduce production cost as well as provide make the process safe and reduce environmental hazards. It has been identified from previous research papers that the cost of materials used is much higher than the cost of energy needed for the process. The materials, unit operations and processes involved are identified. Steady state simulation is done. Each unit is taken into consideration and the variables are optimized. The units are sequentially optimized in the order in which they appear in the rough flow sheet. Use of newer equipments in the process is suggested. The reactor system on being optimised by an equilibrium based approach gave the operating temperature as 360 C and 6:1 Benzene: Propylene ratio in feed. The distillation columns were optimised and the number of trays for benzene column was found to be 20 by 8 and that for cumene column to be 20 by 10. The reflux ratio values were found to be 0.5 and 0.8 respectively for the columns. The optimised temperature for flashing was identified as 92.5 C. The modified flow sheet of the optimised process was prepared which gives the values of all the optimised variables in detail.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition

Authors: Tsai, SJ; Hofmann, M; Hallock, M; Ada, E; Kong, J; Ellenbecker, M (2009) Environmental Science and Technology 43:6017-6023. HERO ID: 787161

[Less] Airborne nanoparticles released during the synthesis of single-walled and multi-walled carbon nanotubes . . . [More] Airborne nanoparticles released during the synthesis of single-walled and multi-walled carbon nanotubes were measured and characterized. This study reported the field measurements during the development of carbon nanotube production. Monitoring data were taken and the sampling methods to characterize aerosol release were developed along with the modification of carbon nanotube production in a time period from 2006 to 2009. Particle number concentrations for diameters from 5 nm to 20 microm were measured using the fast mobility particle sizer and the aerodynamic particle sizer; the particles released from the furnace were found to be less than 500 nm in diameter. The morphology and elemental composition of the released nanoparticles were characterized by scanning and transmission electron microscopy and energy dispersive spectroscopy. Different operating conditions of multi-walled carbon nanotubes (MWCNT) production were studied to evaluate their effects on the number and morphology of aerosol particles, and the number of particles released. Carbon nanotube filaments and carbon particles in clusters were found among the released aerosol particles during production of multiwalled carbon nanotubes.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Environmental assessment of single-walled carbon nanotube processes

Authors: Healy, ML; Dahlben, LJ; Isaacs, JA (2008) Journal of Industrial Ecology 12:376-393. HERO ID: 180377

[Less] The environmental assessment of nanomanufacturing during the initial process design phase should lead . . . [More] The environmental assessment of nanomanufacturing during the initial process design phase should lead to the development of competitive, safe, and environmentally responsible engineering and commercialization. Given the potential benefits and concerns regarding the use of single-walled carbon nanotubes (SWNTs), three SWNT production processes have been investigated to assess their associated environmental impacts. These processes include arc ablation (arc), chemical vapor deposition (CVD), and high-pressure carbon monoxide (HiPco). Without consideration of the currently unknown impacts of SWNT dispersion or other health impacts, life cycle
assessment (LCA) methodology is used to analyze the environmental impact and provide a baseline for the environmental footprint of each manufacturing process. Although the technical attributes of the product resulting from each process may not be fully comparable, this study presents comparisons that show that the life cycle impacts are dominated by energy, specifically the electricity used in production. Under base case yield conditions, HiPco shows the lowest environmental impact, while the arc process has the lowest impact under best case yield conditions.