Health & Environmental Research Online (HERO)


Nanoscale Carbon

Show Project Details Hide Project Details
272 References Were Found:

Data/Software
Data/ Software

ChemIDplus - a TOXNET database

Author: NLM (2019) National Institutes of Health, U.S. Library of Medicine. HERO ID: 6302807


Data/Software
Data/ Software

ChemIDplus - a TOXNET database

Author: ChemIDplus (2018) National Institutes of Health, U.S. Library of Medicine. HERO ID: 4235826


Data/Software
Data/ Software

ChemIDplus - a TOXNET database

Author: NLM (2016) Bethesda, MD: National Institutes of Health, U.S. Library of Medicine. HERO ID: 2991424


Archival Material
Archival Material

Ecological State of the Science Report on decabromodiphenyl ether (decaBDE): Summary

Author: Environment Canada (2013) Available online at https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/publications/ecological-state-science-report-decabromodiphenyl.html. [Website] HERO ID: 4158871

Abstract: Table of contents for EC SOS on Decabromodiphenyl Ether (decaBDE)

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Impact of diameter on carbon nanotube transport in sand

Authors: O'Carroll, DM; Liu, X; Mattison, NT; Petersen, EJ (2013) HERO ID: 1578299

[Less] Carbon nanotubes are the subject of intense research due to their unique properties: light weight, significant . . . [More] Carbon nanotubes are the subject of intense research due to their unique properties: light weight, significant strength, excellent conductivity, and outstanding chemical resistance. This has led to their application in a wide variety of industries (e.g., in composite materials). As a result of their potential impact to humans and ecosystems, there is increasing interest in understanding the factors that control the transport of carbon nanotubes in the environment, and of particular interest to this study, their transport in porous media. In this work, the transport behavior of multiwall carbon nanotubes (MWCNTs) is investigated in sand packed column experiments. To determine the importance of MWCNT diameter, experiments were conducted using four commercially available MWCNTs. Results suggest that smaller MWCNTs are less mobile than their larger counterparts, likely due to the increase in Brownian motion leading to more MWCNT collisions with the porous media with decreasing MWCNT size. A numerical model was used to simulate observed MWCNT transport behavior and facilitate comparison with published studies. These results suggest that careful characterization of MWCNT characteristics (i.e., dimensions and initial MWCNT mass in suspension) is essential to adequately interpret observed results. Results from this study suggest that MWCNTs may be mobile under conditions expected in subsurface aquifers.

Technical Report
Technical Report

Flame retardants: Textile finishes for flame resistant fabrics

Author: Textile Exchange (2012) HERO ID: 1065584


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The complexity of nanoparticle dissolution and its importance in nanotoxicological studies

Authors: Misra, SK; Dybowska, A; Berhanu, D; Luoma, SN; Valsami-Jones, E (2012) Science of the Total Environment 438:225-232. [Review] HERO ID: 1291310

[Less] Dissolution of nanoparticles (NPs) is an important property that alters their abundance and is often . . . [More] Dissolution of nanoparticles (NPs) is an important property that alters their abundance and is often a critical step in determining safety of nanoparticles. The dissolution status of the NPs in exposure media (i.e. whether they remain in particulate form or dissolve - and to what extent), strongly affects the uptake pathway, toxicity mechanisms and the environmental compartment in which NPs will have the highest potential impact. A review of available dissolution data on NPs demonstrates there is a range of potential outcomes depending on the NPs and the exposure media. For example two nominally identical nanoparticles, in terms of size and composition, could have totally different dissolution behaviours, subject to different surface modifications. Therefore, it is imperative that toxicological studies are conducted in conjunction with dissolution of NPs to establish the true biological effect of NPs and hence, assist in their regulation.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water

Authors: Zhang, L; Petersen, EJ; Zhang, W; Chen, Y; Cabrera, M; Huang, Q (2012) HERO ID: 1325603

[Less] Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic . . . [More] Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. (14)C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals' surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Behavior of stabilized multiwalled carbon nanotubes in a FeCl3 coagulation system and the structure characteristics of the produced flocs

Authors: He, M; Zhou, R; Guo, X (2012) Journal of Colloid and Interface Science 366:173-178. HERO ID: 955027

[Less] The understanding of the fate and the transport of carbon nanotubes (CNTs) in the water treatment process . . . [More] The understanding of the fate and the transport of carbon nanotubes (CNTs) in the water treatment process will provide important information for assessing the environmental risks of CNTs. To fill the knowledge gap, this study investigated the removability of multiwalled carbon nanotubes (MWNTs) stabilized by humic acid (HA) during the coagulation-flocculation-sedimentation (CFS) process. The structure characteristics of the produced flocs were systematically investigated using a variety of characterization approaches. The configuration resembling a root-soil system is shown in the images of scanning and transmission electron microscopy (SEM and TEM). With the incorporation of HA-MWNTs into the produced flocs, the X-ray diffraction (XRD) patterns of MWNTs completely disappeared. Fourier transform infrared spectra (FT-IR) and Mössbauer spectra suggested that the intervention of HA-hinged MWNTs increased the degree of polymerization and the particle size of the produced hydrous ferric oxide (HFO). Finally, both the effective sequestration of MWNTs by CFS demonstrated here and the high sorption capacity of MWNTs for phenanthrene implied that MWNTs might be used as a potential coagulant aid in water processing for the enhanced removal of hydrophobic organic chemicals.

Technical Report
Technical Report

Nanomaterial case study: a comparison of multiwalled carbon nanotube and decabromodiphenyl ether flame-retardant coatings applied to upholstery textiles (draft)

Author: U.S. EPA (2012) (EPA/600/R-12/043A). RTP, NC: U.S. Environmental Protection Agency. [EPA Report] HERO ID: 1239489