Health & Environmental Research Online (HERO)


Mouse Lung Tumor

Show Project Details Hide Project Details
8 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Induction of multiciliated cells from induced pluripotent stem cells

Author: Gomperts, BN (2014) HERO ID: 2347031


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer

Authors: Kadara, H; Fujimoto, J; Yoo, SY; Maki, Y; Gower, AC; Kabbout, M; Garcia, MM; Chow, CW; Chu, Z; Mendoza, G; Shen, L; Kalhor, N; Hong, WK; Moran, C; Wang, J; Spira, A; Coombes, KR; Wistuba, II (2014) HERO ID: 2347032

[Less] BACKGROUND: Earlier work identified specific tumor-promoting abnormalities that are . . . [More] BACKGROUND: Earlier work identified specific tumor-promoting abnormalities that are shared between lung cancers and adjacent normal bronchial epithelia. We sought to characterize the yet unknown global molecular and adjacent airway field cancerization (FC) in early-stage non-small cell lung cancer (NSCLC).

METHODS: Whole-transcriptome expression profiling of resected early-stage (I-IIIA) NSCLC specimens (n = 20) with matched tumors, multiple cytologically controlled normal airways with varying distances from tumors, and uninvolved normal lung tissues (n = 194 samples) was performed using the Affymetrix Human Gene 1.0 ST platform. Mixed-effects models were used to identify differentially expressed genes among groups. Ordinal regression analysis was performed to characterize site-dependent airway expression profiles. All statistical tests were two-sided, except where noted.

RESULTS: We identified differentially expressed gene features (n = 1661) between NSCLCs and airways compared with normal lung tissues, a subset of which (n = 299), after gene set enrichment analysis, statistically significantly (P < .001) distinguished large airways in lung cancer patients from airways in cancer-free smokers. In addition, we identified genes (n = 422) statistically significantly and progressively differentially expressed in airways by distance from tumors that were found to be congruently modulated between NSCLCs and normal lung tissues. Furthermore, LAPTM4B, with statistically significantly increased expression (P < .05) in airways with shorter distance from tumors, was upregulated in human immortalized cells compared with normal bronchial epithelial cells (P < .001) and promoted anchorage-dependent and -independent lung cancer cell growth.

CONCLUSIONS: The adjacent airway FC comprises both site-independent profiles as well as gradient and localized airway expression patterns. Profiling of the airway FC may provide new insights into NSCLC oncogenesis and molecular tools for detection of the disease.

Journal Article
Journal Article

Enriching the molecular definition of the airway "field of cancerization:" establishing new paradigms for the patient at risk for lung cancer

Authors: Gomperts, BN; Walser, TC; Spira, A; Dubinett, SM (2013) HERO ID: 2347030

[Less] The "field of cancerization" refers to histologically normal-appearing tissue adjacent to . . . [More] The "field of cancerization" refers to histologically normal-appearing tissue adjacent to neoplastic tissue that displays molecular abnormalities, some of which are the same as those of the tumor. Improving our understanding of these molecular events is likely to increase our understanding of carcinogenesis. Kadara and colleagues attempt to characterize the molecular events occurring temporally and spatially within the field of cancerization of patients with early-stage non-small cell lung cancer (NSCLC) following definitive surgery. They followed patients with bronchoscopies annually after tumor resection and extracted RNA from the serial brushings from different endobronchial sites. They then conducted microarray analysis to identify gene expression differences over time and in different sites in the airway. Candidate genes were found that may have biologic relevance to the field of cancerization. For example, expression of phosphorylated AKT and ERK1/2 was found to increase in the airway epithelium with time. Although there are limitations in the study design, this investigation demonstrates the utility of identifying molecular changes in histologically normal airway epithelium in lung cancer. In addition to increasing our understanding of lung cancer biology, studying the field of cancerization has the potential to identify biomarkers from samples obtained in a minimally invasive manner.

Journal Article
Journal Article

Characterizing the molecular spatial and temporal field of injury in early-stage smoker non-small cell lung cancer patients after definitive surgery by expression profiling

Authors: Kadara, H; Shen, L; Fujimoto, J; Saintigny, P; Chow, CW; Lang, W; Chu, Z; Garcia, M; Kabbout, M; Fan, YH; Behrens, C; Liu, DA; Mao, L; Lee, JJ; Gold, KA; Wang, J; Coombes, KR; Kim, ES; Hong, WK; Wistuba, II (2013) HERO ID: 2347033

[Less] Gene expression alterations in response to cigarette smoke have been characterized in normal-appearing . . . [More] Gene expression alterations in response to cigarette smoke have been characterized in normal-appearing bronchial epithelium of healthy smokers, and it has been suggested that adjacent histologically normal tissue displays tumor-associated molecular abnormalities. We sought to delineate the spatial and temporal molecular lung field of injury in smoker patients with early-stage non-small cell lung cancer (NSCLC; n = 19) who were accrued into a surveillance clinical trial for annual follow-up and bronchoscopies within 1 year after definitive surgery. Bronchial brushings and biopsies were obtained from six different sites in the lung at the time of inclusion in the study and at 12, 24, and 36 months after the first time point. Affymetrix Human Gene 1.0 ST arrays were used for whole-transcript expression profiling of airways (n = 391). Microarray analysis identified gene features (n = 1,165) that were nonuniform by site and differentially expressed between airways adjacent to tumors relative to more distant samples as well as those (n = 1,395) that were significantly altered with time up to 3 years. In addition, gene interaction networks mediated by phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK)1/2 were modulated in adjacent compared with contralateral airways and the latter network with time. Furthermore, phosphorylated AKT and ERK1/2 immunohistochemical expression were significantly increased with time (nuclear pAKT, P = 0.03; cytoplasmic pAKT, P < 0.0001; pERK1/2, P = 0.02) and elevated in adjacent compared with more distant airways (nuclear pAKT, P = 0.04; pERK1/2, P = 0.03). This study highlights spatial and temporal cancer-associated expression alterations in the molecular field of injury of patients with early-stage NSCLCs after definitive surgery that warrant further validation in independent studies.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Genetic variation in innate immunity and inflammation pathways associated with lung cancer risk

Authors: Shiels, MS; Engels, EA; Shi, J; Landi, MT; Albanes, D; Chatterjee, N; Chanock, SJ; Caporaso, NE; Chaturvedi, AK (2012) Cancer 118:5630-5636. HERO ID: 1600075

[Less] BACKGROUND: Pulmonary inflammation may contribute to lung cancer etiology. The authors . . . [More] BACKGROUND: Pulmonary inflammation may contribute to lung cancer etiology. The authors conducted a broad evaluation of the association of single nucleotide polymorphisms (SNPs) in innate immunity and inflammation pathways with lung cancer risk and conducted comparisons with a lung cancer genome-wide association study (GWAS).

METHODS: In total, 378 patients with lung cancer (cases) and a group of 450 controls from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial were included. A proprietary oligonucleotide pool assay was used to genotype 1429 SNPs. Odds ratios and 95% confidence intervals were estimated for each SNP, and P values for trend (P(trend) ) were calculated. For statistically significant SNPs (P(trend) < .05), the results were replicated with genotyped or imputed SNPs in the GWAS, and P values were adjusted for multiple testing.

RESULTS: In the PLCO analysis, a significant association was observed between lung cancer and 81 SNPs located in 44 genes (P(trend) < .05). Of these 81 SNPS, there was evidence for confirmation in the GWAS for 10 SNPs. However, after adjusting for multiple comparisons, the only SNP that retained a significant association with lung cancer in the replication phase was reference SNP rs4648127 (nuclear factor of kappa light polypeptide gene enhancer of B-cells 1 [NFKB1]) (multiple testing-adjusted P(trend) = .02). The cytosine-thymine (CT)/TT genotype of NFKB1 was associated with reduced odds of lung cancer in the PLCO study (odds ratio, 0.56; 95% confidence interval, 0.37-0.86) and the in the GWAS (odds ratio, 0.79; 95% confidence interval, 0.69-0.90).

CONCLUSIONS: A significant association was observed between a variant in the NFKB1 gene and the risk of lung cancer. The current findings add to evidence implicating inflammation and immunity in lung cancer etiology.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Lung cancer in never smokers--a review

Authors: Couraud, S; Zalcman, G; Milleron, B; Morin, F; Souquet, PJ (2012) European Journal of Cancer 48:1299-1311. [Review] HERO ID: 1600072

[Less] An estimated 10-25% of lung cancers worldwide occur in never smokers, i.e. individuals having smoked . . . [More] An estimated 10-25% of lung cancers worldwide occur in never smokers, i.e. individuals having smoked less than 100 cigarettes in their lifetime. Lung cancer in never smokers (LCINS) is more frequent in women, although large geographic variations are found. Histologically, adenocarcinomas predominate. The mere existence of LCINS suggests that risk factors other than smoking must be present. Exposure to environmental tobacco smoke (particularly in women) and exposure to workplace carcinogens (particularly in men) are the two most important alternative risk factors. However, a history of either is absent in more than a third of LCINS. The large proportion of women in LCINS suggest a hormonal element that may interact with other identified factors such as hereditary risks, a history of respiratory infections or disease, exposure to air pollution, cooking and heating fumes, or exposure to ionising radiation. The study of genomic polymorphisms finds constitutive DNA variations across subjects according to their smoking status, particularly in genes coding for enzymes that participate in the metabolism of certain carcinogens, in those coding for DNA repair enzymes, or in genes associated with tobacco addiction, or inflammatory processes. The type of molecular mutation in p53 or KRAS varies with smoking status. EGFR mutations are more frequent in never smokers, as are EML4-ALK fusions. The mutually exclusive nature of certain mutations is a strong argument in favour of separate genetic paths to cancer for ever smokers and never smokers. In the present paper we review current clinical and molecular aspects of LCINS.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Identification and expansion of the tumorigenic lung cancer stem cell population

Authors: Eramo, A; Lotti, F; Sette, G; Pilozzi, E; Biffoni, M; Di Virgilio, A; Conticello, C; Ruco, L; Peschle, C; De Maria, R (2008) Cell Death and Differentiation 15:504-514. HERO ID: 605192

[Less] Lung carcinoma is often incurable and remains the leading cancer killer in both men and women. Recent . . . [More] Lung carcinoma is often incurable and remains the leading cancer killer in both men and women. Recent evidence indicates that tumors contain a small population of cancer stem cells that are responsible for tumor maintenance and spreading. The identification of the tumorigenic population that sustains lung cancer may contribute significantly to the development of effective therapies. Here, we found that the tumorigenic cells in small cell and non-small cell lung cancer are a rare population of undifferentiated cells expressing CD133, an antigen present in the cell membrane of normal and cancer-primitive cells of the hematopoietic, neural, endothelial and epithelial lineages. Lung cancer CD133+ cells were able to grow indefinitely as tumor spheres in serum-free medium containing epidermal growth factor and basic fibroblast growth factor. The injection of 104 lung cancer CD133+ cells in immunocompromised mice readily generated tumor xenografts phenotypically identical to the original tumor. Upon differentiation, lung cancer CD133+ cells acquired the specific lineage markers, while loosing the tumorigenic potential together with CD133 expression. Thus, lung cancer contains a rare population of CD133+ cancer stem-like cells able to self-renew and generates an unlimited progeny of non-tumorigenic cells. Molecular and functional characterization of such a tumorigenic population may provide valuable information to be exploited in the clinical setting.Cell Death and Differentiation (2008) 15, 504–514; doi:10.1038/sj.cdd.4402283; published online 30 November 2007 [ABSTRACT FROM AUTHOR] Copyright of Cell Death & Differentiation is the property of Nature Publishing Group and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts)

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Cancer-related inflammation

Authors: Mantovani, A; Allavena, P; Sica, A; Balkwill, F (2008) Nature 454:436-444. HERO ID: 498117

[Less] The mediators and cellular effectors of inflammation are important constituents of the local environment . . . [More] The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.