Health & Environmental Research Online (HERO)


Arsenic Hazard ID

Show Project Details Hide Project Details
1,634 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Proteomic analysis of arsenite - Mediated multiple antibiotic resistance in Yersinia enterocolitica biovar 1A

Authors: Mallik, S; Virdi, JS; Johri, AK (In Press) Journal of Basic Microbiology. HERO ID: 1003606

[Less] Arsenic is one of the most important global environmental pollutants. In the present study, fifty one . . . [More] Arsenic is one of the most important global environmental pollutants. In the present study, fifty one clinical strains of Yersinia enterocolitica biovar 1A showed high resistance to arsenite and arsenate. The minimum inhibitory concentration (MIC) of arsenite (0.625-20 mM) was lower than arsenate (10-80 mM). Growth of Y. enterocolitica in 2 mM arsenite led to 2-8 fold increase in MICs of the five antibiotics (amikacin, ciprofloxacin, gentamycin, kanamycin and tetracycline), suggesting expression of arsenite-induced multiple antibiotic resistance among the strains. Proteomic analysis of Y. enterocolitica revealed differential expression of certain proteins following arsenite exposure, which included a putative outer membrane porin (OmpA) and a putative amino acid transporter protein. In conclusion, modulation of membrane permeability may be involved in the induction of arsenite-mediated expression of multiple antibiotic resistance in Y. enterocolitica. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

A periplasmic arsenite-binding protein involved in regulating arsenite oxidation

Authors: Liu, G; Liu, M; Kim, E-H; Matty, WS; Bothner, B; Lei, B; Rensing, C; Wang, G; McDermott, TR (In Press) Environmental Microbiology. HERO ID: 1003591

[Less] Arsenic (As) is the most common toxic element in the environment, ranking first on the Superfund List . . . [More] Arsenic (As) is the most common toxic element in the environment, ranking first on the Superfund List of Hazardous Substances. Microbial redox transformations are the principal drivers of As chemical speciation, which in turn dictates As mobility and toxicity. Consequently, in order to manage or remediate environmental As, land managers need to understand how and why microorganisms react to As. Studies have demonstrated a two-component signal transduction system comprised of AioS (sensor kinase) and AioR (response regulator) is involved in regulating microbial AsIII oxidation, with the AsIII oxidase structural genes aioB and aioA being upregulated by AsIII. However, it is not known whether AsIII is first detected directly by AioS or by an intermediate. Herein we demonstrate the essential role of a periplasmic AsIII-binding protein encoded by aioX, which is upregulated by AsIII. An ΔaioX mutant is defective for upregulation of the aioBA genes and consequently AsIII oxidation. Purified AioX expressed without its TAT-type signal peptide behaves as a monomer (MW 32 kDa), and Western blots show AioX to be exclusively associated with the cytoplasmic membrane. AioX binds AsIII with a K(D) of 2.4 µM AsIII; however, mutating a conserved Cys108 to either alanine or serine resulted in lack of AsIII binding, lack of aioBA induction, and correlated with a negative AsIII oxidation phenotype. The discovery and characterization of AioX illustrates a novel AsIII sensing mechanism that appears to be used in a range of bacteria and also provides one of the first examples of a bacterial signal anchor protein.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

Authors: Zargar, K; Conrad, A; Bernick, DL; Lowe, TM; Stolc, V; Hoeft, S; Oremland, RS; Stolz, J; Saltikov, CW (In Press) Environmental Microbiology. HERO ID: 1015673

[Less] Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs . . . [More] Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Classification accuracy and cut point selection

Author: Liu, X (In Press) Statistics in Medicine. HERO ID: 1015791

[Less] In biomedical research and practice, quantitative tests or biomarkers are often used for diagnostic . . . [More] In biomedical research and practice, quantitative tests or biomarkers are often used for diagnostic or screening purposes, with a cut point established on the quantitative measurement to aid binary classification. This paper introduces an alternative to the traditional methods based on the Youden index and the closest-to-(0, 1) criterion for threshold selection. A concordance probability evaluating the classification accuracy of a dichotomized measure is defined as an objective function of the possible cut point. A nonparametric approach is used to search for the optimal cut point maximizing the objective function. The procedure is shown to perform well in a simulation study. Using data from a real-world study of arsenic-induced skin lesions, we apply the method to a measure of blood arsenic levels, selecting a cut point to be used as a warning threshold. Copyright © 2012 John Wiley & Sons, Ltd.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America

Authors: Litter, MI; Alarcón-Herrera, MT; Arenas, MJ; Armienta, MA; Avilés, M; Cáceres, RE; Cipriani, HN; Cornejo, L; Dias, LE; Cirelli, AF; Farfán, EM; Garrido, S; Lorenzo, L; Morgada, ME; Olmos-Márquez, MA; Pérez-Carrera, A (In Press) Science of the Total Environment. [Review] HERO ID: 1017514

[Less] Small-scale and household low-cost technologies to provide water free of arsenic for drinking purposes, . . . [More] Small-scale and household low-cost technologies to provide water free of arsenic for drinking purposes, suitable for isolated rural and periurban areas not connected to water networks in Latin America are described. Some of them are merely adaptation of conventional technologies already used at large and medium scale, but others are environmentally friendly emerging procedures that use local materials and resources of the affected zone. The technologies require simple and low-cost equipment that can be easily handled and maintained by the local population. The methods are based on the following processes: combination of coagulation/flocculation with adsorption, adsorption with geological and other low-cost natural materials, electrochemical technologies, biological methods including phytoremediation, use of zerovalent iron and photochemical processes. Examples of relevant research studies and developments in the region are given. In some cases, processes have been tested only at the laboratory level and there is not enough information about the costs. However, it is considered that the presented technologies constitute potential alternatives for arsenic removal in isolated rural and periurban localities of Latin America. Generation, handling and adequate disposal of residues should be taken into account in all cases.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Oxidation of arsenite by two β-proteobacteria isolated from soil

Authors: Bachate, SP; Khapare, RM; Kodam, KM (In Press) Applied Microbiology and Biotechnology. HERO ID: 1003602

[Less] Two heterotrophic As(III)-oxidizing bacteria, SPB-24 and SPB-31 were isolated from garden soil. Based . . . [More] Two heterotrophic As(III)-oxidizing bacteria, SPB-24 and SPB-31 were isolated from garden soil. Based on 16S rRNA gene sequence analysis, strain SPB-24 was closely related to genus Bordetella, and strain SPB-31 was most closely related to genus Achromobacter. Both strains exhibited high As(III) (15 mM for SPB-24 and 40 mM for SPB-31) and As(V) (>300 mM for both strains) resistance. Both strains oxidized 5 mM As(III) in minimal medium with oxidation rate of 554 and 558 μM h(-1) for SPB-24 and SPB-31, respectively. Washed cells of both strains oxidized As(III) over broad pH and temperature range with optimum pH 6 and temperature 42°C for both strains. The As(III) oxidation kinetic by washed cells showed K (m) and V (max) values of 41.7 μM and 1,166 μM h(-1) for SPB-24, 52 μM and 1,186 μM h(-1) for SPB-31. In the presence of minimal amount of carbon source, the strains showed high As(III) oxidation rate and high specific arsenite oxidase activity. The ability of strains to resist high concentration of arsenic and oxidize As(III) with highest rates reported so far makes them potential candidates for bioremediation of arsenic-contaminated environment.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Solution structure of Mycobacterium tuberculosis NmtR in the Apo state: Insights into Ni(II)-mediated allostery

Authors: Lee, CW; Chakravorty, DK; Chang, F-MJ; Reyes-Caballero, H; Ye, Y; Merz, KM, Jr; Giedroc, DP (In Press) Biochemistry. HERO ID: 1015682

[Less] Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic . . . [More] Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments

Authors: Kim, S-H; Kim, K; Ko, K-S; Kim, Y; Lee, K-S (In Press) Chemosphere. HERO ID: 1015768

[Less] The co-contamination of arsenic (As) and fluoride (F(-)) in shallow aquifers is frequently observed . . . [More] The co-contamination of arsenic (As) and fluoride (F(-)) in shallow aquifers is frequently observed worldwide, and the correlations between those contaminants are different according to the redox conditions. This study geochemically explores the reasons for the co-contamination and for the redox-dependent correlations by investigating the groundwater of an alluvial aquifer in Korea. Geochemical signatures of the groundwater in the study area show that the As concentrations are enriched by the reductive dissolution of Fe-(hydr)oxides, and the correlations between As and F(-) concentrations are poor comparatively to those observed in the oxidizing aquifers. However, F(-) concentrations are strongly dependent on pH. Desorption/adsorption experiments using raw soils and citrate-bicarbonate-dithionite treated soils indicated that Fe-(hydr)oxides are the important As and F(-) hosts causing the co-contamination phenomenon. The weaker correlation between F(-) and As in reducing aquifers is likely to be associated with sulfate reduction, which removes As from groundwater without changing the F(-) concentration.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation

Authors: Remy, E; Cabrito, TR; Batista, RA; Teixeira, MC; Sá-Correia, I; Duque, P (In Press) New Phytologist. HERO ID: 1070322

[Less] • The activation of high-affinity root transport systems is the best-conserved strategy employed by . . . [More] • The activation of high-affinity root transport systems is the best-conserved strategy employed by plants to cope with low inorganic phosphate (Pi) availability, a role traditionally assigned to Pi transporters of the Pht1 family, whose respective contributions to Pi acquisition remain unclear. • To characterize the Arabidopsis thaliana Pht1;9 transporter, we combined heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Double Pht1;9/Pht1;8 silencing lines were also generated to gain insight into the role of the closest Pht1;9 homolog. • Pht1;9 encodes a functional plasma membrane-localized transporter that mediates high-affinity Pi/H(+) symport activity in yeast and is highly induced in Pi-starved Arabidopsis roots. Null pht1;9 alleles exhibit exacerbated responses to prolonged Pi limitation and enhanced tolerance to arsenate exposure, whereas Pht1;9 overexpression induces the opposite phenotypes. Strikingly, Pht1;9/Pht1;8 silencing lines display more pronounced defects than the pht1;9 mutants. • Pi and arsenic plant content analyses confirmed a role of Pht1;9 in Pi acquisition during Pi starvation and arsenate uptake at the root-soil interface. Although not affecting plant internal Pi repartition, Pht1;9 activity influences the overall Arabidopsis Pi status. Finally, our results indicate that both the Pht1;9 and Pht1;8 transporters function in sustaining plant Pi supply on environmental Pi depletion.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells

Authors: Reaves, ML; Sinha, S; Rabinowitz, JD; Kruglyak, L; Redfield, RJ (In Press) Science. HERO ID: 1250967

[Less] A strain of Halomonas bacteria, GFAJ-1, has been claimed to be able to use arsenate as a nutrient when . . . [More] A strain of Halomonas bacteria, GFAJ-1, has been claimed to be able to use arsenate as a nutrient when phosphate is limiting, and to specifically incorporate arsenic into its DNA in place of phosphorus. However, we have found that arsenate does not contribute to growth of GFAJ-1 when phosphate is limiting and that DNA purified from cells grown with limiting phosphate and abundant arsenate does not exhibit the spontaneous hydrolysis expected of arsenate ester bonds. Furthermore, mass spectrometry showed that this DNA contains only trace amounts of free arsenate and no detectable covalently bound arsenate.