Health & Environmental Research Online (HERO)


Arsenic Hazard ID

Show Project Details Hide Project Details
717 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants

Authors: Mosa, KA; Kumar, K; Chhikara, S; Mcdermott, J; Liu, Z; Musante, C; White, JC; Dhankher, OP (In Press) Transgenic Research. HERO ID: 1015734

[Less] Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in . . . [More] Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America

Authors: Litter, MI; Alarcón-Herrera, MT; Arenas, MJ; Armienta, MA; Avilés, M; Cáceres, RE; Cipriani, HN; Cornejo, L; Dias, LE; Cirelli, AF; Farfán, EM; Garrido, S; Lorenzo, L; Morgada, ME; Olmos-Márquez, MA; Pérez-Carrera, A (In Press) Science of the Total Environment. [Review] HERO ID: 1017514

[Less] Small-scale and household low-cost technologies to provide water free of arsenic for drinking purposes, . . . [More] Small-scale and household low-cost technologies to provide water free of arsenic for drinking purposes, suitable for isolated rural and periurban areas not connected to water networks in Latin America are described. Some of them are merely adaptation of conventional technologies already used at large and medium scale, but others are environmentally friendly emerging procedures that use local materials and resources of the affected zone. The technologies require simple and low-cost equipment that can be easily handled and maintained by the local population. The methods are based on the following processes: combination of coagulation/flocculation with adsorption, adsorption with geological and other low-cost natural materials, electrochemical technologies, biological methods including phytoremediation, use of zerovalent iron and photochemical processes. Examples of relevant research studies and developments in the region are given. In some cases, processes have been tested only at the laboratory level and there is not enough information about the costs. However, it is considered that the presented technologies constitute potential alternatives for arsenic removal in isolated rural and periurban localities of Latin America. Generation, handling and adequate disposal of residues should be taken into account in all cases.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Mass Arsenic Poisoning and the Public Health Response in Maine

Authors: Mills, DA; Tomassoni, AJ; Tallon, LA; Kade, KA; Savoia, ES (In Press) Disaster Medicine and Public Health Preparedness. HERO ID: 1017315

[Less] Created in the wake of the September 11, 2001 terrorist attacks, Maine's Office of Public Health Emergency . . . [More] Created in the wake of the September 11, 2001 terrorist attacks, Maine's Office of Public Health Emergency Preparedness within the Maine Center for Disease Control and Prevention undertook a major reorganization of epidemiology and laboratory services and began developing relationships with key partners and stakeholders, and a knowledgeable and skilled public health emergency preparedness workforce. In 2003, these newly implemented initiatives were tested extensively during a mass arsenic poisoning at the Gustav Adolph Lutheran Church in the rural northern community of New Sweden, Maine. This episode serves as a prominent marker of how increased preparedness capabilities, as demonstrated by the rapid identification and administration of antidotes and effective collaborations between key partners, can contribute to the management of broader public health emergencies in rural areas.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Transport routes of metalloids into and out of the cell: A review of the current knowledge

Authors: Zangi, R; Filella, M (In Press) Chemico-Biological Interactions. [Review] HERO ID: 1015719

[Less] Except for their extra- and intra-cellular interfaces, cell membranes are hydrophobic and inhibit the . . . [More] Except for their extra- and intra-cellular interfaces, cell membranes are hydrophobic and inhibit the transport of hydrophilic molecules. Metalloids in aqueous solutions form chemical species with oxygen and hydroxyl groups and, therefore, exist as hydrophilic neutral polar solutes or as hydrophilic anions. This characteristic of metalloids introduces a large barrier for their passage through the cell membrane via unaided diffusion. The necessity for an uptake mechanism for metalloids arises from the requirement of these species for the maintenance of life, such as the need of boron for plant cells. Conversely, the transport of these species out of the cell is necessary because some metalloids are toxic, such as arsenic and antimony, and their entrance into the cell is undesirable. The undesired uptake of these toxic species is possible via pathways designed for the uptake of other structurally and chemically similar essential compounds. Therefore, the extrusion of arsenic and antimony out of the cell is an example of a detoxification mechanism. As a consequence of the hydrophobic character of the cell membrane in all living systems, the main route for the uptake and efflux of metalloids is facilitated by transmembrane proteins, driven either by concentration gradients or by energy-fueled pumps. However, metalloids forming or embedded in nano-sized particles escape the need to cross the cell membrane because these particles can be taken into the cell by endocytosis. Here, we review the uptake and efflux pathways of boron, silicon, arsenic, and antimony through the cell membranes of different organisms and the protein channels involved in these processes. In particular, passive diffusion via aquaglyceroporins, active transport via primary and secondary ion pumps, extrusion into vacuoles of metalloid-thiol conjugates via ATP-binding cassette, the efflux of methylated metalloids, and endocytosis are summarized.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

High Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population

Authors: Cubillos, FA; Parts, L; Salinas, F; Bergström, A; Scovacricchi, E; Zia, A; Illingworth, CJ; Mustonen, V; Ibstedt, S; Warringer, J; Louis, EJ; Durbin, R; Liti, G (In Press) Genetics (Online). HERO ID: 2064246

[Less] A large fraction of human complex trait heritability is due to a high number of variants with small . . . [More] A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects, and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker's yeast from a multi-parent 12(th) generation intercross. We selected four representative founder strains to produce the SGRP-4X mapping population, and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects, and complex allelic series at a locus. SGRP-4X is a deeply characterised resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes, and serves as a test bed for testing avenues to attack human complex traits.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Technological options for the removal of arsenic with special reference to South East Asia

Authors: Jain, CK; Singh, RD (In Press) Journal of Environmental Management. [Review] HERO ID: 1070320

[Less] Arsenic contamination in ground water, used for drinking purpose, has been envisaged as a problem of . . . [More] Arsenic contamination in ground water, used for drinking purpose, has been envisaged as a problem of global concern. However, arsenic contamination of ground water in parts of South East Asia is assuming greater proportions and posing a serious threat to the health of millions of people. A variety of treatment technologies based on oxidation, co-precipitation, adsorption, ion exchange and membrane process are available for the removal of arsenic from ground water. However, question remains regarding the efficiency and applicability/appropriateness of the technologies, particularly because of low influent arsenic concentration and differences in source water composition. Some of these methods are quite simple, but the disadvantage associated with them is that they produce large amounts of toxic sludge, which needs further treatment before disposal into the environment. Besides, the system must be economically viable and socially acceptable. In this paper an attempt has been made to review and update the recent advances made in the technological development in arsenic removal technologies to explore the potential of those advances to address the problem of arsenic contamination in South East Asia.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions-a mini review

Authors: Pontoni, L; Fabbricino, M (In Press) Carbohydrate Research. [Review] HERO ID: 1070378

[Less] Arsenic removal has become a relevant concern due to the final confirmation of its behaviour as chronic . . . [More] Arsenic removal has become a relevant concern due to the final confirmation of its behaviour as chronic human carcinogen, corresponding to an ever-increasing contamination of water, soil and crops in many parts of the world. Developing easily accessible removal strategies is therefore a primary environmental matter. Chitosan and chitosan derivatives show good adsorption performances against arsenic removal and are considered low cost products, easily obtainable. This review provides a summary of recent advances of the application of these compounds in the area of sorption sciences for arsenate and arsenite removal from water, focusing on equilibrium and kinetic mechanisms.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain

Authors: Azizur Rahman, M; Hasegawa, H; Lim, RP (In Press) Environmental Research. [Review] HERO ID: 1070386

[Less] The occurrence, distribution, speciation, and biotransformation of arsenic in aquatic environment (marine . . . [More] The occurrence, distribution, speciation, and biotransformation of arsenic in aquatic environment (marine and freshwater) have been studied extensively by several research groups during last couple of decades. However, most of those studies have been conducted in marine waters, and the results are available in a number of reviews. Speciation, bioaccumulation, and biotransformation of arsenic in freshwaters have been studied in recent years. Although inorganic arsenic (iAs) species dominates in both marine and freshwaters, it is biotransformed to methyl and organoarsenic species by aquatic organisms. Phytoplankton is considered as a major food source for the organisms of higher trophic levels in the aquatic food chain, and this autotrophic organism plays important role in biotransformation and distribution of arsenic species in the aquatic environment. Bioaccumulation and biotransformation of arsenic by phytoplankton, and trophic transfer of arsenic in marine and freshwater food chains have been important concerns because of possible human health effects of the toxic metalloid from dietary intake. To-date, most of the studies on arsenic biotransformation, speciation, and trophic transfer have focused on marine environments; little is known about these processes in freshwater systems. This article has been reviewed the bioaccumulation, biotransformation, and trophic transfer of arsenic in marine and freshwater food chain.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions

Authors: Mondal, P; Bhowmick, S; Chatterjee, D; Figoli, A; Van der Bruggen, B (In Press) Chemosphere. [Review] HERO ID: 1519091

[Less] Arsenic contaminations of groundwater in several parts of the world are the results of natural and/or . . . [More] Arsenic contaminations of groundwater in several parts of the world are the results of natural and/or anthropogenic sources, and have a large impact on human health. Millions of people from different countries rely on groundwater containing As for drinking purposes. This paper reviews removal technologies (oxidation, coagulation flocculation, adsorption, ion exchange and membrane processes) with attention for the drawbacks and limitations of these applied technologies. The technologies suggested and applied for treatment of As rich water have various problems, including the need for further treatment of As containing secondary waste generated from these water treatment processes. More efficient technologies, with a lower tendency to generate waste include the removal of As by membrane distillation or forward osmosis, instead of using pressure driven membrane processes and subsequently reducing soluble As to commercially valuable metallic As are surveyed. An integrated approach of two or more techniques is suggested to be more beneficial than a single process. Advanced technologies such as membrane distillation, forward osmosis as well as some hybrid integrated techniques and their potentials are also discussed in this review. Membrane processes combined with other process (especially iron based technologies) are thought to be most sustainable for the removal of arsenic and further research allowing scale up of these technologies is suggested.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Arsenic in the human food chain: The Latin American perspective

Authors: Bundschuh, J; Nath, B; Bhattacharya, P; Liu, C-W; Armienta, MA; Moreno López, MV; Lopez, DL; Jean, J-S; Cornejo, L; Lauer Macedo, LF; Filho, AT (In Press) Science of the Total Environment. [Review] HERO ID: 1021992

[Less] Many regions of Latin America are widely reported for the occurrence of high arsenic (As) in groundwater . . . [More] Many regions of Latin America are widely reported for the occurrence of high arsenic (As) in groundwater and surface water due to a combination of geological processes and/or anthropogenic activities. In this paper, we review the available literature (both in English and Spanish languages) to delineate human As exposure pathways through the food chain. Numerous studies show that As accumulations in edible plants and crops are mainly associated with the presence of high As in soils and irrigation waters. However, factors such as As speciation, type and composition of soil, and plant species have a major control on the amount of As uptake. Areas of high As concentrations in surface water and groundwater show high As accumulations in plants, fish/shellfish, livestock meat, milk and cheese. Such elevated As concentrations in food may result in widespread health risks to local inhabitants, including health of indigenous populations and residents living close to mining industries. Some studies show that As can be transferred from the water to prepared meals, thereby magnifying the As content in the human diet. Arsenic speciation might also change during food preparation, especially during high temperature cooking, such as grilling and frying. Finally, the review of the available literature demonstrates the necessity of more rigorous studies in evaluating pathways of As exposure through the human food chain in Latin America.