Health & Environmental Research Online (HERO)


ISA NOxSOxPM Ecology (2018)

Show Project Details Hide Project Details
222 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The reduction of summer sulfate and switch from summertime to wintertime PM2.5 concentration maxima in the United States : Supplementary materials

Authors: Chan, EAW; Gantt, B; Mcdow, S (2018) Atmospheric Environment 175. [Supplemental Data] HERO ID: 4386847

Abstract: Supplementary materials

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Spatial variations in snowpack chemistry, isotopic composition of NO3- and nitrogen deposition from the ice sheet margin to the coast of western Greenland

Authors: Curtis, CJ; Kaiser, Jan; Marca, A; Anderson, NJ; Simpson, G; Jones, V; Whiteford, E (2018) Biogeosciences 15:529-550. HERO ID: 4354383

[Less] The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological . . . [More] The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological change in remote Arctic ecosystems, especially lakes, have been the subject of debate over the last decade. Some palaeoecological studies have cited isotopic signals (delta N-15)) preserved in lake sediments as evidence linking N deposition with ecological change, but a key limitation has been the lack of co-located data on both deposition input fluxes and isotopic composition of deposited nitrate (NO3-). In Arctic lakes, including those in western Greenland, previous palaeolimnological studies have indicated a spatial variation in delta(N-15) trends in lake sediments but data are lacking for deposition chemistry, input fluxes and stable isotope composition of NO3-. In the present study, snowpack chemistry, NO3- stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at eight locations within three lake catchments in each of three regions (ice sheet margin in the east, the central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181mm snow water equivalent (SWE) compared with 36mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl-, other major cations), ammonium (NH4+; regional means 1.4-2.7 mu mol L-1), total and non-sea-salt sulfate (SO42-; total 1.8-7.7, non-sea-salt 1.0-1.8 mu mol L-1/than the two inland regions. Nitrate (1.5-2.4 mu mol L-1/showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in greater net deposition for NO3- as well as NH4+ and non-sea-salt sulfate (nss-SO42-) relative to the inland regions (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17 and 11 mol ha(-1) a(-1) of NO3-, NH4+ and nss-SO42- respectively). The delta(N-15) of snowpack NO3- shows a significant decrease from inland regions (5.7 parts per thousand at Kelly Ville) to the coast (-11.3 parts per thousand). We attribute the spatial patterns of delta(N-15) in western Greenland to post-depositional processing rather than differing sources because of (1) spatial relationships with precipitation and sublimation, (2) within catchment isotopic differences between terrestrial snowpack and lake ice snowpack, and (3) similarities between fresh snow (rather than accumulated snowpack) at Kelly Ville and the coast. Hence the delta(N-15) of coastal snowpack is most representative of snowfall in western Greenland, but after deposition the effects of photolysis, volatilization and sublimation lead to enrichment of the remaining snowpack with the greatest effect in inland areas of low precipitation and high sublimation losses.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The reduction of summer sulfate and switch from summertime to wintertime PM2.5 concentration maxima in the United States

Authors: Chan, EAW; Gantt, B; McDow, S (2018) Atmospheric Environment 175:25-32. HERO ID: 4386275

[Less] Exposure to particulate matter air pollution with a nominal mean aerodynamic diameter less than or equal . . . [More] Exposure to particulate matter air pollution with a nominal mean aerodynamic diameter less than or equal to 2.5 gm (PM(2.)5) has been associated with health effects including cardiovascular disease and death. Here, we add to the understanding of urban and rural PM2.5 concentrations over large spatial and temporal scales in recent years. We used high-quality, publicly-available air quality monitoring data to evaluate PM2.5 concentration patterns and changes during the years 2000-2015. Compiling and averaging measurements collected across the U.S. revealed that PM2.5 concentrations from urban sites experienced seasonal maxima in both winter and summer. Within each year from 2000 to 2008, the maxima of urban summer peaks were greater than winter peaks. However, from 2012 to 2015, the maxima of urban summertime PM2.5 peaks were smaller than the urban wintertime PM2.5 maxima, due to a decrease in the magnitude of summertime maxima with no corresponding decrease in the magnitude of winter maxima. PM2.5 measurements at rural sites displayed summer peaks with magnitudes relatively similar to those of urban sites, and negligible to no winter peaks through the time period analyzed. Seasonal variations of urban and rural PM2.5 sulfate, PM2.5 nitrate, and PM2.5 organic carbon (OC) were also assessed. Summer peaks in PM2.5 sulfate decreased dramatically between 2000 and 2015, whereas seasonal PM2.5 OC and winter PM2.5 nitrate concentration maxima remained fairly consistent. These findings demonstrate that PM2.5 concentrations, especially those occurring in the summertime, have declined in the U.S. from 2000 to 2015. In addition, reduction strategies targeting sulfate have been successful and the decrease in PM2.5 sulfate contributed to the decline in total PM2.5.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Evaluation of atmospheric nitrogen deposition model performance in the context of US critical load assessments

Authors: Williams, JJ; Chung, SH; Johansen, AM; Lamb, BK; Vaughan, JK; Beutel, M (2017) Atmospheric Environment 150:244-255. HERO ID: 3605775

[Less] Air quality models are widely used to estimate pollutant deposition rates and thereby calculate critical . . . [More] Air quality models are widely used to estimate pollutant deposition rates and thereby calculate critical loads and critical load exceedances (model deposition > critical load). However, model operational performance is not always quantified specifically to inform these applications, We developed a performance assessment approach designed to inform critical load and exceedance calculations, and applied it to the Pacific Northwest region of the U.S. We quantified wet inorganic N deposition performance of several widely-used air quality models, including five different Community Multiscale Air Quality Model (CMAQ) simulations, the Tdep model, and 'PRISM x NTN' model. Modeled wet inorganic N deposition estimates were compared to wet inorganic N deposition measurements at 16 National Trends Network (NTN) monitoring sites, and to annual bulk inorganic N deposition measurements at Mount Rainier National Park. Model bias (model observed) and error (vertical bar model - observed vertical bar) were expressed as a percentage of regional critical load values for diatoms and lichens. This novel approach demonstrated that wet inorganic N deposition bias in the Pacific Northwest approached or exceeded 100% of regional diatom and lichen critical load values at several individual monitoring sites, and approached or exceeded 50% of critical loads when averaged regionally. Even models that adjusted deposition estimates based on deposition measurements to reduce bias or that spatially-interpolated measurement data, had bias that approached or exceeded critical loads at some locations. While wet inorganic N deposition model bias is only one source of uncertainty that can affect critical load and exceedance calculations, results demonstrate expressing bias as a percentage of critical loads at a spatial scale consistent with calculations may be a useful exercise for those performing calculations. It may help decide if model performance is adequate for a particular calculation, help assess confidence in calculation results, and highlight cases where a non-deterministic approach may be needed. (C) 2016 Elsevier Ltd. All rights reserved.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1

Authors: Appel, KW; Napelenok, SL; Foley, KM; Pye, HOT; Hogrefe, C; Luecken, DJ; Bash, JO; Roselle, SJ; Pleim, JE; Foroutan, H; Hutzell, WT; Pouliot, GA; Sarwar, G; Fahey, KM; Gantt, B; Gilliam, RC; Heath, NK; Kang, D; Mathur, R; Schwede, DB; Spero, TL; Wong, DC; Young, JO (2017) Geoscientific Model Development 10:1703-1732. HERO ID: 3846692

[Less] The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling . . . [More] The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency's (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O-3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2.5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O-3 mixing ratios, primarily due to reduced cloudiness and attenuation of photolysis in the model. Updates to the aerosol chemistry result in higher secondary organic aerosol (SOA) concentrations in the summer, thereby reducing summertime PM2.5 bias (PM2.5 is typically underestimated by CMAQ in the summer), while updates to the gas chemistry result in slightly higher O-3 and PM2.5 on average in January and July. Overall, the seasonal variation in simulated PM2.5 generally improves in CMAQv5.1 (when considering all model updates), as simulated PM2.5 concentrations decrease in the winter (when PM2.5 is generally overestimated by CMAQ) and increase in the summer (when PM2.5 is generally underestimated by CMAQ). Ozone mixing ratios are higher on average with v5.1 vs. v5.0.2, resulting in higher O-3 mean bias, as O-3 tends to be overestimated by CMAQ throughout most of the year (especially at locations where the observed O-3 is low); however, O-3 correlation is largely improved with v5.1. Sensitivity simulations for several hypothetical emission reduction scenarios show that v5.1 tends to be slightly more responsive to reductions in NOx (NO + NO2), VOC and SOx (SO2 + SO4) emissions than v5.0.2, representing an improvement as previous studies have shown CMAQ to underestimate the observed reduction in O-3 due to large, widespread reductions in observed emissions.

Technical Report
Technical Report

Integrated science assessment for sulfur oxides: Health criteria

Author: U.S. EPA (2017) (EPA/600/R-17/451). Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment- RTP. [EPA Report] HERO ID: 4216110


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

A hybrid modeling approach for estimating reactive nitrogen deposition in Rocky Mountain National Park

Authors: Malm, WC; Rodriguez, MA; Schichtel, BA; Gebhart, KA; Thompson, TM; Barna, MG; Benedict, KB; Carrico, CM; Collett, JL, Jr (2016) Atmospheric Environment 126:258-273. HERO ID: 3106244

[Less] Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of nitrogen . . . [More] Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of nitrogen deposition associated with emissions of nitrogen from sources in Colorado as well as other areas of the North American continent and beyond. Nitrogen species are in both reduced and oxidized forms. A year-long monitoring program was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically, the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases in RMNP and to identify the emission sources of these various species. The apportionment strategy was designed to focus on differentiating between sources within and outside the state of Colorado and then further differentiate between sources along the Front Range of Colorado and the rest of Colorado. It was also desirous to identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. The Particle Source Apportionment Technology (PSAT) module available in the chemical transport model, the Comprehensive Air quality Model with extensions (CAMx), is used to develop first-principle estimates of the contributions from different areas of North America. The CAMx_PSAT results are combined with measured species concentrations in a receptor modeling approach to develop final estimates of source apportionment of the various species' concentrations and deposition. (C) 2015 Elsevier Ltd. All rights reserved.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Application of an online ion chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur

Authors: Rumsey, IC; Walker, JT (2016) Atmospheric Measurement Techniques Discussions 1-35. HERO ID: 3106247

[Less] The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of . . . [More] The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the de position budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), an commercially available on-line ion chromatography-based analyzer is characterized for the first time as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3−, SO2 and SO42−. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86 %, 42 %, 82 %, 73 %, 74 %, and 69 % for NH3, NH4+, HNO3, NO3−, SO2, and SO42−, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31 %, 121 %, 42 %, 43 %, 67 %, and 56 % for NH3, NH4+, HNO3, NO3−, SO2, and SO42−, respectively. Flux uncertainty is dominated by uncertainty in the chemical concentrations gradients during the day but uncertainty in the chemical concentration gradients and transfer velocity are of the same order at night. Results show the instrument is sufficiently precise for flux gradient applications.

Archival Material
Archival Material

Summary of monitoring data: September 2016

Author: Naess, L (2016) [Personal Communication] HERO ID: 3449156

Abstract: Response to Data Request (via email)

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Increasing ammonia concentration trends in large regions of the USA derived from the NADP/AMoN network

Authors: Butler, T; Vermeylen, F; Lehmann, CM; Likens, GE; Puchalski, M (2016) HERO ID: 3474826

[Less] Data from bi-weekly passive samplers from 18 of the longest operating National Atmospheric Deposition . . . [More] Data from bi-weekly passive samplers from 18 of the longest operating National Atmospheric Deposition Program's (NADP) Ammonia Monitoring Network (AMoN) sites (most operating from 2008 to 2015) show that concentrations of NH3 have been increasing (p-value < 0.0001) over large regions of the USA. This trend is occurring at a seasonal and annual level of aggregation. Using random coefficient models (RCM), the mean slope for the 18 sites combined shows an increase of NH3 concentration of +7% per year, with a 95% confidence interval (C.I.) from +5% to +9% per year. Travel blank corrected data using the same approach show increasing NH3 concentrations of +9% (95% C.I. +5% to +13%) per year. During a comparable period (2008-2014) NADP precipitation chemistry sites in the same regions show significant increasing (p-value = 0.0001) precipitation NH4+ concentrations trends for all sites combined of +5% (95% C.I. +3% to +7%) per year.

Emissions inventory data for the study period show nearly constant rates of NH3 emissions, but large reductions in NOx and SO2 emissions. Seasonal air quality data from the Clean Air Status and Trends Network (CASTNET) sites in these regions show significant declines in atmospheric particulate SO42- and NH4+, and particulate NO3- plus HNO3 (total NO3-) during the same period. Less formation of acidic SO4 and NO3, due to reduced SO2 and NOx emissions, provide less substrate to interact with NH3 and form particulate ammonium species. Thus, concentrations of NH3 can increase in the atmosphere even if emissions remain constant. A likely result may be more localized deposition of NH3, as opposed to the more long-range transport and deposition of ammonium nitrate (NH4NO3) and sulfate (NH4)(2)SO4). Additionally, the spatial distribution of wet and dry acidic deposition will be impacted. (C) 2016 Elsevier Ltd. All rights reserved.