Health & Environmental Research Online (HERO)


Vanadium Compounds - Problem Formulation


26,513 References Were Found:

Journal Article
Journal Article

Search for New Catalysts for the Oxidation of SO2

Authors: Loskyll, J; Stöwe, K; Maier, WF (In Press) . HERO ID: 1935413

[Less] The focus of this paper is the search and characterization of novel catalysts for the gas phase oxidation . . . [More] The focus of this paper is the search and characterization of novel catalysts for the gas phase oxidation of concentrated SO2 for the production of sulfuric acid. Modern high-throughout (HT) methods such as emissivity corrected Infrared Thermography (ecIRT) and automated synthesis techniques were used for the synthesis and activity measurements of the samples. In addition a plug flow reactor that uses UV-vis online analytics for the quantification of the SO2 conversion was designed, built and used for validation of the HT results. The study started with a highly diverse search space of elemental compositions designed for potential discovery. About a thousand samples were synthesized using sol-gel recipes and screened for catalytic SO2 oxidation activity over a temperature range of 330-450 °C. Several novel catalyst systems were discovered during the screening process and the most interesting systems were further characterized. The most important doping effects on activity found were the influence of bismuth and selenium doping on standard sulfuric acid catalysts, the activity gain of chromium based catalysts caused by the doping with antimony and the activity gain of chromium as well as iron and vanadium based catalysts caused by the doping with tin.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

Authors: Natalio, F; André, R; Hartog, AF; Stoll, B; Jochum, KP; Wever, R; Tremel, W (In Press) Nature Nanotechnology. HERO ID: 1256771

[Less] Marine biofouling-the colonization of small marine microorganisms on surfaces that are directly exposed . . . [More] Marine biofouling-the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls-is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen ((1)O(2)) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Oxidation of Benzoin Catalyzed by Oxovanadium(IV) Schiff Base Complexes

Authors: Alsalim, TA; Hadi, JS; Ali, ON; Abbo, HS; Titinchi, SJ (In Press) Chemistry Central Journal. HERO ID: 1500952

[Less] ABSTRACT: BACKGROUND: The oxidative transformation of benzoin to benzil has been accomplished by the . . . [More] ABSTRACT: BACKGROUND: The oxidative transformation of benzoin to benzil has been accomplished by the use of a wide variety of reagents or catalysts and different reaction procedures. The conventional oxidizing agents yielded mainly benzaldehyde or/and benzoic acid and only a trace amount of benzil. The limits of practical utilization of these reagents involves the use of stoichiometric amounts of corrosive acids or toxic metallic reagents, which in turn produce undesirable waste materials and required high reaction temperatures.In recent years, vanadium complexes have attracted much attention for their potential utility as catalysts for various types of reactions. RESULTS: Active and selective catalytic systems of new unsymmetrical oxovanadium(IV) Schiff base complexes for the oxidation of benzoin is reported. The Schiff base ligands are derived between 2-aminoethanol and 2-hydroxy-1-naphthaldehyde (H2L1) or 3-ethoxy salicylaldehyde (H2L3); and 2-aminophenol and 3-ethoxysalicylaldehyde (H2L2) or 2-hydroxy-1-naphthaldehyde (H2L4). The unsymmetrical Schiff bases behave as tridentate dibasic ONO donor ligands. Reaction of these Schiff base ligands with oxovanadyl sulphate afforded the mononuclear oxovanadium(IV) complexes (VIVOLx.H2O), which are characterized by various physico-chemical techniques.The catalytic oxidation activities of these complexes for benzoin were evaluated using H2O2 as an oxidant. The best reaction conditions are obtained by considering the effect of solvent, reaction time and temperature. Under the optimized reaction conditions, VOL4 catalyst showed high conversion (>99 %) with excellent selectivity to benzil (~100 %) in a shorter reaction time compared to the other catalysts considered. CONCLUSION: Four tridentate ONO type Schiff base ligands were synthesized. Complexation of these ligands with vanadyl(IV) sulphate leads to the formation of new oxovanadium(IV) complexes of type VIVOL.H2O.Elemental analyses and spectral data of the free ligands and their oxovanadium(IV) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds.Oxovanadium complexes were screened for the oxidation of benzoin to benzil using H2O2 as oxidant. The effect of time, solvent and temperature were optimized to obtain maximum yield. The catalytic activity results demonstrate that these catalytic systems are both highly active and selective for the oxidation of benzoin under mild reaction conditions.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Twenty-four-hour urinary trace element excretion: Reference intervals and interpretive issues

Authors: Sieniawska, CE; Jung, LC; Olufadi, R; Walker, V (In Press) Annals of Clinical Biochemistry. HERO ID: 1015724

[Less] BACKGROUND: Introduction of inductively coupled plasma mass spectrometry (ICP-MS) into clinical laboratories . . . [More] BACKGROUND: Introduction of inductively coupled plasma mass spectrometry (ICP-MS) into clinical laboratories has led to an increasing application of analyses to risk assessment for toxicity from environmental exposure to trace elements, and in occupational monitoring. Interpretation of results from random urine samples may be problematic and measurement of excretion over 24 h is sometimes preferable. Recent reference data are sparse. METHODS: Twenty-four-hour urine samples from 111 healthy adults from the renal stones clinic in Southampton, UK, were analysed for 31 trace elements using ICP-MS and for zinc using atomic absorption spectroscopy. Non-parametric 0.95 coverage intervals were determined for trace element excretion per 24 h and as a ratio to creatinine, for the full study cohort and separately for men (n = 77) and women (n = 34). RESULTS: Beryllium was undetectable in 95% of samples, bismuth in 87% and uranium in 75%. In comparison with published ranges, reference intervals for this cohort were higher for molybdenum, tin and vanadium, and for arsenic due to inclusion of fish arsenicals. Aluminium, chromium, iron, lead and mercury were lower. In our cohort, 24-h excretion of 17 elements was significantly higher in men than in women. However, when expressed as trace element to creatinine ratios, the situation reversed strikingly. Because of their lower creatinine excretion, ratios for 18 elements were significantly higher for women. CONCLUSIONS: New adult reference intervals were obtained for 24-h urine trace element excretion. Trace element:creatinine ratios must be used cautiously, with separate ranges for men and women.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Synergistic reutilization of red mud and spent pot lining for recovering valuable components and stabilizing harmful element

Authors: Xie, W; Zhou, F; Liu, J; Bi, X; Huang, Z; Li, Y; Chen, D; Zou, H; Sun, S (2020) HERO ID: 6309063


Journal Article
Journal Article

Real-space investigation of the charge density wave in VTe2 monolayer with broken rotational and mirror symmetries

Authors: Miao, G; Xue, S; Li, Bo; Lin, Z; Liu, B; Zhu, X; Wang, W; Guo, J (2020) HERO ID: 6309064


Journal Article
Journal Article

Catalytic mechanisms of oxygen-containing groups over vanadium active sites in an Al-MCM-41 framework for production of 2,5-diformylfuran from 5-hydroxymethylfurfural

Authors: Miao, G; Xue, S; Li, Bo; Lin, Z; Liu, B; Zhu, X; Liu, LiJ; Wang, ZM; Lyu, YaJ; Zhang, JinF; Huang, Z; Qi, T; Si, ZB; Yang, HuaQ; Hu, CWei (2020) HERO ID: 6309065


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Preparation and characterization of metal organic framework-derived nanoporous carbons for highly efficient removal of vanadium from aqueous solution

Authors: Salehi, S; Mandegarzad, S; Anbia, M (2020) HERO ID: 6309066


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Synthesis and characterization of Bi3+ and V5+ co-substituted La2Mo2O9

Authors: Saikia, AJ; Mondal, PS; Pandey, A (2020) HERO ID: 6309067


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO4/rGO electrode

Authors: Lu, Wei; Cong, L; Liu, Y; Liu, Jia; Mauger, A; Julien, CM; Sun, L; Xie, H (2020) HERO ID: 6309068