Health & Environmental Research Online (HERO)


Arsenic (Inorganic)

Show Project Details Hide Project Details
2,387 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

A periplasmic arsenite-binding protein involved in regulating arsenite oxidation

Authors: Liu, G; Liu, M; Kim, E-H; Matty, WS; Bothner, B; Lei, B; Rensing, C; Wang, G; McDermott, TR (In Press) Environmental Microbiology. HERO ID: 1003591

[Less] Arsenic (As) is the most common toxic element in the environment, ranking first on the Superfund List . . . [More] Arsenic (As) is the most common toxic element in the environment, ranking first on the Superfund List of Hazardous Substances. Microbial redox transformations are the principal drivers of As chemical speciation, which in turn dictates As mobility and toxicity. Consequently, in order to manage or remediate environmental As, land managers need to understand how and why microorganisms react to As. Studies have demonstrated a two-component signal transduction system comprised of AioS (sensor kinase) and AioR (response regulator) is involved in regulating microbial AsIII oxidation, with the AsIII oxidase structural genes aioB and aioA being upregulated by AsIII. However, it is not known whether AsIII is first detected directly by AioS or by an intermediate. Herein we demonstrate the essential role of a periplasmic AsIII-binding protein encoded by aioX, which is upregulated by AsIII. An ΔaioX mutant is defective for upregulation of the aioBA genes and consequently AsIII oxidation. Purified AioX expressed without its TAT-type signal peptide behaves as a monomer (MW 32 kDa), and Western blots show AioX to be exclusively associated with the cytoplasmic membrane. AioX binds AsIII with a K(D) of 2.4 µM AsIII; however, mutating a conserved Cys108 to either alanine or serine resulted in lack of AsIII binding, lack of aioBA induction, and correlated with a negative AsIII oxidation phenotype. The discovery and characterization of AioX illustrates a novel AsIII sensing mechanism that appears to be used in a range of bacteria and also provides one of the first examples of a bacterial signal anchor protein.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Photovoltaic device on a single ZnO nanowire p-n homojunction

Authors: Cho, HD; Zakirov, AS; Yuldashev, SU; Ahn, CW; Yeo, YK; Kang, TW (In Press) Nanotechnology. HERO ID: 1015707

[Less] A photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. . . . [More] A photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in situ arsenic-doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased conditions. Our results demonstrate that the present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nanoscale electronic, optoelectronic and medical devices.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis

Authors: Zhang, Y-Y; Yang, J; Yin, X-X; Yang, S-P; Zhu, Y-G (In Press) European Journal of Protistology. HERO ID: 1015745

[Less] The arsenic metabolism in different biological organisms has been studied extensively. However, little . . . [More] The arsenic metabolism in different biological organisms has been studied extensively. However, little is known about protozoa. Herein, we investigated the cell stress responses of the freshwater ciliate Tetrahymena pyriformis to arsenate toxicity. An acute toxicity assay revealed an 18-h EC(50) arsenate concentration of ca. 40μM, which caused significant changes in the cell shape, growth and organism mobility. Whereas, under exposure to 30μM arsenate, T. pyriformis could grow reasonably well, indicating a certain resistance of this organism. Arsenic speciation analysis revealed that 94-98% of the total arsenate in cells of T. pyriformis could be transformed to monomethylarsonic acid, dimethylarsinic acid and a small proportion of arsenite after 18h of arsenate exposure, thus indicating the major detoxification pathway by arsenic oxidation/reduction and biomethylation. Finally, comparative proteomic analysis unveiled significant changes in the expression of multiple proteins involved in anti-oxidation, sugar and energy metabolism, proteolysis, and signal transduction. Our results revealed multiple pathways of arsenate detoxification in T. pyriformis, and indicated that protozoa may play important roles in the biogeochemical cycles of arsenic.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Field Testing of Arsenic in Groundwater Samples of Bangladesh Using a Test Kit Based on Lyophilized Bioreporter Bacteria

Authors: Siegfried, K; Endes, C; Bhuiyan, AF; Kuppardt, A; Mattusch, J; van der Meer, JR; Chatzinotas, A; Harms, H (In Press) Environmental Science and Technology. HERO ID: 1015751

[Less] A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response . . . [More] A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response to arsenite and arsenate was applied during a field campaign in six villages across Bangladesh. Bioreporter field measurements of arsenic in groundwater from tube wells were in satisfying agreement with the results of spectroscopic analyses of the same samples conducted in the lab. The practicability of the bioreporter test in terms of logistics and material requirements, suitability for high sample throughput, and waste disposal was much better than that of two commercial chemical test kits that were included as references. The campaigns furthermore demonstrated large local heterogeneity of arsenic in groundwater, underscoring the use of well switching as an effective remedy to avoid high arsenic exposure.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Solution structure of Mycobacterium tuberculosis NmtR in the Apo state: Insights into Ni(II)-mediated allostery

Authors: Lee, CW; Chakravorty, DK; Chang, F-MJ; Reyes-Caballero, H; Ye, Y; Merz, KM, Jr; Giedroc, DP (In Press) Biochemistry. HERO ID: 1015682

[Less] Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic . . . [More] Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil

Authors: Bahar, MM; Megharaj, M; Naidu, R (In Press) Biodegradation. HERO ID: 1249005

[Less] A new arsenite-oxidizing bacterium was isolated from a low arsenic-containing (8.8 mg kg(-1)) soil. . . . [More] A new arsenite-oxidizing bacterium was isolated from a low arsenic-containing (8.8 mg kg(-1)) soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Stenotrophomonas panacihumi. Batch experiment results showed that the strain completely oxidized 500 μM of arsenite to arsenate within 12 h of incubation in a minimal salts medium. The optimum initial pH range for arsenite oxidation was 5-7. The strain was found to tolerate as high as 60 mM arsenite in culture media. The arsenite oxidase gene was amplified by PCR with degenerate primers. The deduced amino acid sequence showed the highest identity (69.1 %) with the molybdenum containing large subunit of arsenite oxidase derived from Bosea sp. Furthermore the amino acids involved in binding the substrate arsenite, were conserved with the arsenite oxidases of other arsenite oxidizing bacteria such as Alcaligenes feacalis and Herminnimonas arsenicoxydans. To our knowledge, this study constitutes the first report on arsenite oxidation using Stenotrophomonas sp. and the strain has great potential for application in arsenic remediation of contaminated water.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Design, synthesis and evaluation of 2-(arylsulfonyl)oxiranes as cell permeable covalent inhibitors of protein tyrosine phosphatases

Authors: Dana, D; Das, TK; Kumar, I; Davalos, AR; Mark, KJ; Ramai, D; Chang, EJ; Talele, TT; Kumar, S (In Press) Chemical Biology and Drug Design. HERO ID: 1250974

[Less] A structure-based design approach has been applied to develop 2-(arylsulfonyl)oxiranes as potential . . . [More] A structure-based design approach has been applied to develop 2-(arylsulfonyl)oxiranes as potential covalent inhibitors of protein tyrosine phosphatases. A detailed kinetic analysis of inactivation by these covalent inhibitors reveals that this class of compounds inhibits a panel of PTPs in a time- and dose-dependent manner, consistent with the covalent modification of the enzyme active site. An inactivation experiment in presence of sodium arsenate, a known competitive inhibitor of PTP, indicated that these inhibitors were active-site bound. This finding is consistent with the mass spectrometric analysis of the covalently-modified PTP enzyme. Further experiments indicated that these compounds remained inert towards other classes of arylphosphate-hydrolyzing enzymes, and alkaline and acid phosphatases. Cell-based experiments with human A549 lung cancer cell lines indicated that 2-(phenylsulfonyl)oxirane (1) caused increase in intracellular pTyr levels in a dose-dependent manner thereby suggesting its cell permeable nature. Taken together, the newly identified 2-(arylsulfonyl)oxiranyl moiety could serve as a novel chemotype for the development of activity-based probes and therapeutic agents against PTP superfamily of enzymes.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension

Authors: Schmeisser, S; Schmeisser, K; Weimer, S; Groth, M; Priebe, S; Fazius, E; Kuhlow, D; Pick, D; Einax, JW; Guthke, R; Platzer, M; Zarse, K; Ristow, M (In Press) Aging Cell. HERO ID: 1519026

[Less] Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects . . . [More] Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors, and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. This requires two transcription factors, namely DAF-16 and SKN-1, which employ the metallothionein MTL-2 as well as the mitochondrial transporter TIN-9.1 to extend life span. Taken together, low-dose arsenite extends lifespan, providing evidence for non-linear dose-response characteristics of toxin-mediated stress resistance and longevity in a multicellular organism. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

In silico and in vivo studies of an Arabidopsis thaliana gene, ACR2, putatively involved in arsenic accumulation in plants

Authors: Nahar, N; Rahman, A; Moś, M; Warzecha, T; Algerin, M; Ghosh, S; Johnson-Brousseau, S; Mandal, A (In Press) Journal of Molecular Modeling. HERO ID: 1070346

[Less] Previously, our in silico analyses identified four candidate genes that might be involved in uptake . . . [More] Previously, our in silico analyses identified four candidate genes that might be involved in uptake and/or accumulation of arsenics in plants: arsenate reductase 2 (ACR2), phytochelatin synthase 1 (PCS1) and two multi-drug resistant proteins (MRP1 and MRP2) [Lund et al. (2010) J Biol Syst 18:223-224]. We also postulated that one of these four genes, ACR2, seems to play a central role in this process. To investigate further, we have constructed a 3D structure of the Arabidopsis thaliana ACR2 protein using the iterative implementation of the threading assembly refinement (I-TASSER) server. These analyses revealed that, for catalytic metabolism of arsenate, the arsenate binding-loop (AB-loop) and residues Phe-53, Phe-54, Cys-134, Cys-136, Cys-141, Cys-145, and Lys-135 are essential for reducing arsenate to arsenic intermediates (arsenylated enzyme-substrate intermediates) and arsenite in plants. Thus, functional predictions suggest that the ACR2 protein is involved in the conversion of arsenate to arsenite in plant cells. To validate the in silico results, we exposed a transfer-DNA (T-DNA)-tagged mutant of A. thaliana (mutation in the ACR2 gene) to various amounts of arsenic. Reverse transcriptase PCR revealed that the mutant exhibits significantly reduced expression of the ACR2 gene. Spectrophotometric analyses revealed that the amount of accumulated arsenic compounds in this mutant was approximately six times higher than that observed in control plants. The results obtained from in silico analyses are in complete agreement with those obtained in laboratory experiments.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Major and minor arsenic compounds accounting for the total urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): A controlled human study

Authors: Molin, M; Ydersbond, TA; Ulven, SM; Holck, M; Dahl, L; Sloth, JJ; Fliegel, D; Goessler, W; Alexander, J; Meltzer, HM (In Press) Food and Chemical Toxicology. HERO ID: 1070366

[Less] Blue mussels (Mytilus edulis) accumulate and biotransform arsenic (As) to a larger variety of arsenicals . . . [More] Blue mussels (Mytilus edulis) accumulate and biotransform arsenic (As) to a larger variety of arsenicals than most seafood. Eight volunteers ingested a test meal consisting of 150g blue mussel (680μg As), followed by 72h with an identical, low As controlled diet and full urine sampling. We provide a complete speciation, with individual patterns, of urinary As excretion. Total As (tAs) urinary excretion was 328±47μg, whereof arsenobetaine (AB) and dimethylarsinate (DMA) accounted for 66% and 21%, respectively. Fifteen minor urinary arsenicals were quantified with inductively coupled plasma mass spectrometry (ICPMS) coupled to reverse-phase, anion and cation-exchange high performance liquid chromatography (HPLC). Thio-arsenicals and non-thio minor arsenicals (including inorganic As (iAs) and methylarsonate (MA)) contributed 10% and 7% of the total sum of species excretion, respectively, but there were large individual differences in the excretion patterns. Apparently, formation of thio-arsenicals was negatively correlated to AB formation and excretion, possibly indicating a metabolic interrelationship. The results may be of toxicological relevance since DMA and MA have been classified as possibly carcinogenic, and six of the excreted As species were thio-arsenicals which recently have been recognized as toxic, while iAs toxicity is well known.