Health & Environmental Research Online (HERO)


ISA-PM (2019)


57 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence

Authors: Setti, L; Passarini, F; De Gennaro, G; Barbieri, P; Perrone, MG; Borelli, M; Palmisani, J; Di Gilio, A; Torboli, V; Fontana, F; Clemente, L; Pallavicini, A; Ruscio, M; Piscitelli, P; Miani, A (2020) HERO ID: 6574477

[Less] BACKGROUND: The burden of COVID-19 was extremely severe in Northern Italy, an area . . . [More] BACKGROUND: The burden of COVID-19 was extremely severe in Northern Italy, an area characterized by high concentrations of particulate matter (PM), which is known to negatively affect human health. Consistently with evidence already available for other viruses, we initially hypothesized the possibility of SARS-CoV-2 presence on PM, and we performed a first experiment specifically aimed at confirming or excluding this research hyphotesys.

METHODS: We have collected 34 PM10 samples in Bergamo area (the epicenter of the Italian COVID-19 epidemic) by using two air samplers over a continuous 3-weeks period. Filters were properly stored and underwent RNA extraction and amplification according to WHO protocols in two parallel blind analyses performed by two different authorized laboratories. Up to three highly specific molecular marker genes (E, N, and RdRP) were used to test the presence of SARS-CoV-2 RNA on particulate matter.

RESULTS: The first test showed positive results for gene E in 15 out of 16 samples, simultaneously displaying positivity also for RdRP gene in 4 samples. The second blind test got 5 additional positive results for at least one of the three marker genes. Overall, we tested 34 RNA extractions for the E, N and RdRP genes, reporting 20 positive results for at least one of the three marker genes, with positivity separately confirmed for all the three markers. Control tests to exclude false positivities were successfully accomplished.

CONCLUSION: This is the first evidence that SARS-CoV-2 RNA can be present on PM, thus suggesting a possible use as indicator of epidemic recurrence.

Journal Article
Journal Article

Estimating long-term pollution exposure effects through inverse probability weighting methods with Cox proportional hazards models

Authors: Higbee, JD; Lefler, JS; Burnett, RT; Ezzati, M; Marshall, JD; Kim, SY; Bechle, M; Robinson, AL; Pope, CA (2020) HERO ID: 6672380

[Less] Background: Fine particulate matter (PM2.5) is associated with negative health outcomes . . . [More] Background: Fine particulate matter (PM2.5) is associated with negative health outcomes in both the short and long term. However, the cohort studies that have produced many of the estimates of long-term exposure associations may fail to account for selection bias in pollution exposure as well as covariate imbalance in the study population; therefore, causal modeling techniques may be beneficial.

Methods: Twenty-nine years of data from the National Health Interview Survey (NHIS) was compiled and linked to modeled annual average outdoor PM2.5 concentration and restricted-use mortality data. A series of Cox proportional hazards models, adjusted using inverse probability weights, yielded causal risk estimates of long-term exposure to ambient PM2.5 on all-cause and cardiopulmonary mortality.

Results: Covariate-adjusted estimated relative risks per 10 μg/m3 increase in PM2.5 exposure were estimated to be 1.117 (1.083, 1.152) for all-cause mortality and 1.232 (1.174, 1.292) for cardiopulmonary mortality. Inverse probability weighted Cox models provide relatively consistent and robust estimates similar to those in the unweighted baseline multivariate Cox model, though they have marginally lower point estimates and higher standard errors.

Conclusions: These results provide evidence that long-term exposure to PM2.5 contributes to increased mortality risk in US adults and that the estimated effects are generally robust to modeling choices. The size and robustness of estimated associations highlight the importance of clean air as a matter of public health. Estimated confounding due to measured covariates appears minimal in the NHIS cohort, and various distributional assumptions have little bearing on the magnitude or standard errors of estimated causal associations.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Estimating Causal Effects of Particulate Matter Regulation on Mortality

Authors: Sanders, NJ; Barreca, AI; Neidell, MJ (2020) HERO ID: 6671796

[Less] BACKGROUND: Estimating the causal effect of pollution on human health is integral for . . . [More] BACKGROUND: Estimating the causal effect of pollution on human health is integral for evaluating returns to pollution regulation, yet separating out confounding factors remains a perennial challenge.

METHODS: We use a quasi-experimental design to investigate the causal relationship between regulation of particulate matter smaller than 2.5 micrograms per cubic meter (PM2.5) and mortality among those 65 years of age and older. We exploit regulatory changes in the Clean Air Act Amendments (CAAA). Regulation in 2005 impacted areas of the United States differentially based on pre-regulation air quality levels for PM2.5. We use county-level mortality data, extracted from claims data managed by the Centers for Medicare & Medicaid Services, merged to county-level average PM2.5 readings and attainment status as classified by the Environmental Protection Agency.

RESULTS: Based on estimates from log-linear difference-in-differences models, our results indicate after the CAAA designation for PM2.5 in 2005, PM2.5 levels decreased 1.59 micrograms per cubic meter (95% CI = 1.39, 1.80) and mortality rates among those 65 and older decreased by 0.93% (95% CI = 0.10%, 1.77%) in nonattainment counties, relative to attainment ones. Results are robust to a series of alternate models, including nearest-neighbor matching based on propensity score estimates.

CONCLUSION: This analysis suggests large health returns to the 2005 PM2.5 designations, and provides evidence of a causal association between pollution and mortality among the Medicare population.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Lowering Air Pollution Levels in Massachusetts May Prevent Cardiovascular Hospital Admissions

Authors: Yitshak-Sade, M; Nethery, R; Abu Awad, Y; Mealli, F; Dominici, F; Kloog, I; Zanobetti, A (2020) HERO ID: 6672458


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

PM2.5 air pollution and cause-specific cardiovascular disease mortality

Authors: Hayes, RB; Lim, C; Zhang, Y; Cromar, K; Shao, Y; Reynolds, HR; Silverman, DT; Jones, RR; Park, Y; Jerrett, M; Ahn, J; Thurston, GD (2020) HERO ID: 6672384

[Less] BACKGROUND: Ambient air pollution is a modifiable risk factor for cardiovascular disease, . . . [More] BACKGROUND: Ambient air pollution is a modifiable risk factor for cardiovascular disease, yet uncertainty remains about the size of risks at lower levels of fine particulate matter (PM2.5) exposure which now occur in the USA and elsewhere.

METHODS: We investigated the relationship of ambient PM2.5 exposure with cause-specific cardiovascular disease mortality in 565 477 men and women, aged 50 to 71 years, from the National Institutes of Health-AARP Diet and Health Study. During 7.5 x 106 person-years of follow up, 41 286 cardiovascular disease deaths, including 23 328 ischaemic heart disease (IHD) and 5894 stroke deaths, were ascertained using the National Death Index. PM2.5 was estimated using a hybrid land use regression (LUR) geostatistical model. Multivariate Cox regression models were used to estimate relative risks (RRs) and 95% confidence intervals (CI).

RESULTS: Each increase of 10  μg/m3 PM2.5 (overall range, 2.9-28.0  μg/m3) was associated, in fully adjusted models, with a 16% increase in mortality from ischaemic heart disease [hazard ratio (HR) 1.16; 95% CI 1.09-1.22] and a 14% increase in mortality from stroke (HR 1.14; CI 1.02-1.27). Compared with PM2.5 exposure <8  μg/m3 (referent), risks for CVD were increased in relation to PM2.5 exposures in the range of 8-12  μg/m3 (CVD: HR 1.04; 95% CI 1.00-1.08), in the range 12-20  μg/m3 (CVD: HR 1.08; 95% CI 1.03-1.13) and in the range 20+ μg/m3 (CVD: HR 1.19; 95% CI 1.10-1.28). Results were robust to alternative approaches to PM2.5 exposure assessment and statistical analysis.

CONCLUSIONS: Long-term exposure to fine particulate air pollution is associated with ischaemic heart disease and stroke mortality, with excess risks occurring in the range of and below the present US long-term standard for ambient exposure to PM2.5 (12  µg/m3), indicating the need for continued improvements in air pollution abatement for CVD prevention.

Journal Article
Journal Article

Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly

Authors: Wu, X; Braun, D; Schwartz, J; Kioumourtzoglou, MA; Dominici, F (2020) Science Advances 6:eaba5692. HERO ID: 6671709

[Less] Many studies link long-term fine particle (PM2.5) exposure to mortality, even at levels below current . . . [More] Many studies link long-term fine particle (PM2.5) exposure to mortality, even at levels below current U.S. air quality standards (12 micrograms per cubic meter). These findings have been disputed with claims that the use of traditional statistical approaches does not guarantee causality. Leveraging 16 years of data—68.5 million Medicare enrollees—we provide strong evidence of the causal link between long-term PM2.5 exposure and mortality under a set of causal inference assumptions. Using five distinct approaches, we found that a decrease in PM2.5 (by 10 micrograms per cubic meter) leads to a statistically significant 6 to 7% decrease in mortality risk. Based on these models, lowering the air quality standard to 10 micrograms per cubic meter would save 143,257 lives (95% confidence interval, 115,581 to 170,645) in one decade. Our study provides the most comprehensive evidence to date of the link between long-term PM2.5 exposure and mortality, even at levels below current standards.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Power, proximity, and physiology: does income inequality and racial composition amplify the impacts of air pollution on life expectancy in the United States?

Authors: Jorgenson, AK; Hill, TD; Clark, B; Thombs, RP; Ore, P; Balistreri, KS; Givens, JE (2020) HERO ID: 6671655


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China

Authors: Zhang, Y; Ding, Z; Xiang, Q; Wang, W; Huang, L; Mao, F (2020) HERO ID: 6679074

[Less] BACKGROUND: Ambient PM1 (particulate matter with aerodynamic diameter ≤1 μm) is an . . . [More] BACKGROUND: Ambient PM1 (particulate matter with aerodynamic diameter ≤1 μm) is an important contribution of PM2.5 mass. However, little is known worldwide regarding the PM1-associated health effects due to a wide lack of ground-based PM1 measurements from air monitoring stations.

METHODS: We collected daily records of hospital admission for respiratory diseases and station-based measurements of air pollution and weather conditions in Shenzhen, China, 2015-2016. Time-stratified case-crossover design and conditional logistic regression models were adopted to estimate hospitalization risks associated with short-term exposures to PM1 and PM2.5.

RESULTS: PM1 and PM2.5 showed significant adverse effects on respiratory disease hospitalizations, while no evident associations with PM1-2.5 were identified. Admission risks for total respiratory diseases were 1.09 (95% confidence interval: 1.04 to 1.14) and 1.06 (1.02 to 1.10), corresponding to per 10 μg/m3 rise in exposure to PM1 and PM2.5 at lag 0-2 days, respectively. Both PM1 and PM2.5 were strongly associated with increased admission for pneumonia and chronic obstructive pulmonary diseases, but exhibited no effects on asthma and upper respiratory tract infection. Largely comparable risk estimates were observed between male and female patients. Groups aged 0-14 years and 45-74 years were significantly affected by PM1- and PM2.5-associated risks. PM-hospitalization associations exhibited a clear seasonal pattern, with significantly larger risks in cold season than those in warm season among some subgroups.

CONCLUSIONS: Our study suggested that PM1 rather than PM1-2.5 contributed to PM2.5-induced risks of hospitalization for respiratory diseases and effects of PM1 and PM2.5 mainly occurred in cold season.

Journal Article
Journal Article

Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases

Authors: Cao, Yu; Chen, M; Dong, Dan; Xie, S; Liu, Min (2020) HERO ID: 6679080


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The effects of air pollution and meteorological factors on measles cases in Lanzhou, China

Authors: Peng, Lu; Zhao, X; Tao, Yan; Mi, S; Huang, Ju; Zhang, Q (2020) HERO ID: 6679082