Health & Environmental Research Online (HERO)


PFBS (375-73-5)


461 References Were Found:

Data/Software
Data/ Software

Online catalog for the Environmental Health Criteria (EHC) monographs

Author: WHO (2018) Geneva, Switzerland: World Health Organization (WHO). HERO ID: 4235832


Data/Software
Data/ Software

OEHHA toxicity criteria database

Author: CalEPA (2018) Sacramento, CA: Office of Environmental Health Hazard Assessment. HERO ID: 4235824


Data/Software
Data/ Software

IARC Monographs on the evaluation of carcinogenic risk to humans

Author: IARC (2018) International Agency for Research on Cancer. HERO ID: 4235828


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Biomonitoring PFAAs in blood and semen samples: Investigation of a potential link between PFAAs exposure and semen mobility in China

Authors: Song, X; Tang, S; Zhu, H; Chen, Z; Zang, Z; Zhang, Y; Niu, X; Wang, X; Yin, H; Zeng, F; He, C (2018) Environment International 113:50-54. HERO ID: 4220306

[Less] Perfluoroalkyl acids (PFAAs) have been suspected to act as endocrine disruptors and adversely affect . . . [More] Perfluoroalkyl acids (PFAAs) have been suspected to act as endocrine disruptors and adversely affect human reproductive health. We aimed to investigate the association between PFAAs in blood and semen, explore a potential link between PFAAs exposure and semen quality in the population of the Pearl River Delta (PRD) region in China, one of the "world factories". The monitoring results demonstrated that the population (103 male participants) from the PRD region in this study had higher PFAAs levels in blood and semen than some other areas in China. PFOS was found at the highest mean concentrations of 118.16 ng/mL in blood and 5.31 ng/mL in semen among the nine PFAAs. Significant associations were found between concentrations of several analytes in blood and semen, including Σ9 PFAAs (r = 0.475, P < .01), PFOA (r = 0.215, P = .029), PFHS (r = 0.458, P < .01) and PFOS (r = 0.981, P < .01). BMI was the most important factor to PFAAs, but there was no significant difference in PFAAs concentrations in blood and semen collected from participants with different smoking and drinking habits, education background and occupations. Negative correlations were significantly observed between sperm motility and PFBA, PFPeA, PFHxA, PFBS, PFOA, PFHS, PFOS and Σ9PFAAs in semen. Therefore, exposure to PFAAs may result in a decline in semen mobility in participants from the PRD region.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples

Authors: Ren, JY; Wang, XL; Li, XL; Wang, ML; Zhao, RS; Lin, JM (2018) Analytical and Bioanalytical Chemistry 410:1657-1665. HERO ID: 4220307

[Less] Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted . . . [More] Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe2O3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L-1), a wide linear range (5-4000 ng L-1), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe2O3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Perfluoroalkylsulfonic and carboxylic acids in earthworms (Eisenia fetida): Accumulation and effects results from spiked soils at PFAS concentrations bracketing environmental relevance

Authors: Karnjanapiboonwong, A; Deb, SK; Subbiah, S; Wang, D; Anderson, TA (2018) Chemosphere 199:168-173. HERO ID: 4234853

[Less] Effects of perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic . . . [More] Effects of perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluoroheptanoic acid (PFHpA) on earthworms (Eisenia fetida) in soils contaminated with these compounds at 0.1, 1, 10, 1,000, and 100,000 μg kg-1dry weight, covering concentration levels found in background, biosolid-amended, and facility-surrounding soils, were investigated. Earthworms were exposed to spiked soil for 21 days. Concentrations of these compounds in earthworms after 21-d exposure ranged from below detection to 127 mg kg-1wet weight with the rank order of PFNA > PFHxS > PFHpA > PFBS; no mortality of earthworms was observed in all treatments including controls, except PFBS at 1,000 μg kg-1and all PFASs at 100,000 μg kg-1. The highest weight loss (29%) was observed for earthworms exposed to PFNA at 100,000 μg kg-1, which was significantly different from all other treatments except PFHpA at 100,000 μg kg-1. These results are expected to fill some data gaps in toxicity of PFASs in terrestrial environments and provide helpful information on the potential for trophic transport of PFASs from soil to higher organisms.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants

Authors: Zhao, S; Zhou, T; Zhu, L; Wang, B; Li, Z; Yang, L; Liu, L (2018) Environmental Pollution 235:404-410. HERO ID: 4234854

[Less] N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor . . . [More] N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Different biotransformation behaviors of perfluorooctane sulfonamide in wheat (Triticum aestivum L.) from earthworms (Eisenia fetida)

Authors: Zhao, S; Zhou, T; Wang, B; Zhu, L; Chen, M; Li, D; Yang, L (2018) Journal of Hazardous Materials 346:191-198. HERO ID: 4234855

[Less] Perfluorooctane sulfonamide (PFOSA) is a precursor of perfluorooctane sulfonic acid (PFOS) and can be . . . [More] Perfluorooctane sulfonamide (PFOSA) is a precursor of perfluorooctane sulfonic acid (PFOS) and can be broken down to PFOS in environment and biota. In the present work, PFOSA was spiked in soil and its biodegradation in soil, uptake and metabolism in wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) were investigated. The results indicated that PFOSA could be biodegraded to highly stable PFOS, which has the same perfluorinated carbon chain length as PFOSA, by microbes in soil. PFOSA could be taken up by wheat root and earthworm from soil with higher bioaccumulation ability than PFOS. In both wheat and earthworms, PFOSA also degraded to PFOS. However, other shorter-chain perfluoroalkane sulfonates (PFSAs), including perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS), were observed in wheat, but not in soil and earthworms, suggesting that wheat displayed distinctly different degradation mechanisms to PFOSA from soil microbes and earthworms.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Cellular accumulation and lipid binding of perfluorinated alkylated substances (PFASs) - A comparison with lysosomotropic drugs

Authors: Sanchez Garcia, D; Sjödin, M; Hellstrandh, M; Norinder, U; Nikiforova, V; Lindberg, J; Wincent, E; Bergman, Å; Cotgreave, I; Munic Kos, V (2018) Chemico-Biological Interactions 281:1-10. HERO ID: 4234856

[Less] Many chemicals accumulate in organisms through a variety of different mechanisms. Cationic amphiphilic . . . [More] Many chemicals accumulate in organisms through a variety of different mechanisms. Cationic amphiphilic drugs (CADs) accumulate in lysosomes and bind to membranes causing phospholipidosis, whereas many lipophilic chemicals target adipose tissue. Perfluoroalkyl substances (PFASs) are widely used as surfactants, but many of them are highly bioaccumulating and persistent in the environment, making them notorious environmental toxicants. Understanding the mechanisms of their bioaccumulation is, therefore, important for their regulation and substitution with new, less harmful chemicals. We compared the highly bioaccumulative perfluorooctanesulfonic acid PFOS to its three less bioaccumulative alternatives perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutane sulfonic acid (PFBS), in their ability to accumulate and remain in lung epithelial cells (NCI-H292) and adipocytes (3T3-L1K) in vitro. As a reference point we tested a set of cationic amphiphilic drugs (CADs), known to highly accumulate in cells and strongly bind to phospholipids, together with their respective non-CAD controls. Finally, all compounds were examined for their ability to bind to neutral lipids and phospholipids in cell-free systems. Cellular accumulation and retention of the test compounds were highly correlated between the lung epithelial cells and adipocytes. Interestingly, although an anion itself, intensities of PFOS accumulation and retention in cells were comparable to those of CAD compounds, but PFOS failed to induce phospholipidosis or alter lysosomal volume. Compared to other lipophilicity measures, phospholipophilicity shows the highest correlation (Rˆ2 = 0.75) to cellular accumulation data in both cell types and best distinguishes between high and low accumulating compounds. This indicates that binding to phospholipids may be the most important component in driving high cellular accumulation in lung epithelial cells, as well as in adipocytes, and for both CADs and bioaccumulating PFASs. Obtained continuous PLS models based on compound's affinity for phospholipids and neutral lipids can be used as good prediction models of cellular accumulation and retention of PFASs and CADs.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment

Authors: Sun, R; Wu, M; Tang, L; Li, J; Qian, Z; Han, T; Xu, G (2018) Ecotoxicology and Environmental Safety 149:88-95. HERO ID: 4234857

[Less] 17 perfluorinated compounds (PFCs) were systematically investigated in the surface water from principal . . . [More] 17 perfluorinated compounds (PFCs) were systematically investigated in the surface water from principal watersheds of Shanghai, China. 10 PFCs were above the detection limit (0.08-0.28ng/L) in 39 surface water samples. The perfluorooctanoic acid (PFOA) and perfluorobutanesulfonate (PFBS) were the two dominant compounds with a median concentration 50.67ng/L and 29.84ng/L, respectively. Concentrations of perfluorooctanesulfonate (PFOS) were generally less than PFBS, which might result from the global phase-out of PFOS production and the use of PFBS as a substitute for PFOS-based products. There were three major polluted areas of PFOA along the Huangpu River. The PFOA concentration in groundwater samples collected from one of the three areas indicated that chemical industry might be the possible source. The perfluoroalkane sulfonates (PFSAs) level had a spatial trend that indicated northwest had higher concentrations than the southeast. The distribution of PFCs was not much affected by atmospheric deposition. Mass loading analysis in the surface water revealed that the Huangpu River exhibited relatively large mass loading of total PFCs of 1742.43kg/year to Yangtze River Estuary. The predominant of the PFC species was PFOA with 652.65kg/year. The current concentrations of PFOA and PFOS were at middle level comparing to other studies in China and worldwide. Risk assessment of 6 PFCs showed that there is no risk to the aquatic organisms in Shanghai. PFOS and PFBS had low risk to the avian. Furthermore, the adults living in Shanghai were at low risk to exposure to PFCs through water consumption.