Health & Environmental Research Online (HERO)


PFBS (375-73-5)


373 References Were Found:

Technical Report
Technical Report

NTP technical report on the toxicity studies of perfluoroalkyl sulfonates (perfluorobutane sulfonic acid, perfluorohexane sulfonate potassium salt, and perfluorooctane sulfonic acid) administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats

Author: NTP (2019) (Toxicity Report 96). Research Triangle Park, NC: National Toxicology Program. HERO ID: 5400978


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Perfluoroalkyl acids (PFAAs) in serum from 2-4-month-old infants: Influence of maternal serum concentration, gestational age, breast-feeding, and contaminated drinking water

Authors: Gyllenhammar, I; Benskin, JP; Sandblom, O; Berger, U; Ahrens, L; Lignell, S; Wiberg, K; Glynn, A (2018) Environmental Science and Technology 52:7101-7110. HERO ID: 4778766

[Less] Little is known about factors influencing infant perfluorinated alkyl acid (PFAA) concentrations. Associations . . . [More] Little is known about factors influencing infant perfluorinated alkyl acid (PFAA) concentrations. Associations between serum PFAA concentrations in 2-4-month-old infants ( n = 101) and determinants were investigated by multiple linear regression and general linear model analysis. In exclusively breast-fed infants, maternal serum PFAA concentrations 3 weeks after delivery explained 13% (perfluoroundecanoic acid, PFUnDA) to 73% (perfluorohexanesulfonate, PFHxS) of infant PFAA concentration variation. Median infant/maternal ratios decreased with increasing PFAA carbon chain length from 2.8 for perfluoroheptanoic acid and perfluorooctanoic acid (PFOA) to 0.53 for PFUnDA and from 1.2 to 0.69 for PFHxS and perfluorooctanesulfonate (PFOS). Infant PFOA, perfluorononanoic acid (PFNA), and PFOS levels increased 0.7-1.2% per day of gestational age. Bottle-fed infants had mean concentrations of PFAAs 2 times lower than and a mean percentage of branched (%br) PFOS isomers 1.3 times higher than those of exclusively breast-fed infants. PFOA, PFNA, and PFHxS levels increased 8-11% per week of exclusive breast-feeding. Infants living in an area receiving PFAA-contaminated drinking water had 3-fold higher mean perfluorobutanesulfonate (PFBS) and PFHxS concentrations and higher mean %br PFHxS. Prenatal PFAA exposure and postnatal PFAA exposure significantly contribute to infant PFAA serum concentrations, depending on PFAA carbon chain length. Moderately PFBS- and PFHxS-contaminated drinking water is an important indirect exposure source.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples

Authors: Ren, JY; Wang, XL; Li, XL; Wang, ML; Zhao, RS; Lin, JM (2018) Analytical and Bioanalytical Chemistry 410:1657-1665. HERO ID: 4220307

[Less] Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted . . . [More] Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe2O3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L-1), a wide linear range (5-4000 ng L-1), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe2O3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Interactions of perfluoroalkyl substances with a phospholipid bilayer studied by neutron reflectometry

Authors: Nouhi, Y; Ahrens, L; Kabayama, HH; Hughes, NAV; Campana, M; Gutfreund, P; Palsson, GK; Vorobiev, AA; Hellsing, MS (2018) Journal of Colloid and Interface Science 511:474-481. HERO ID: 4234858

[Less] The interactions between perfluoroalkyl substances (PFASs) and a phospholipid bilayer (1,2-dimyristoyl-sn-glycero-3-phosphocholine) . . . [More] The interactions between perfluoroalkyl substances (PFASs) and a phospholipid bilayer (1,2-dimyristoyl-sn-glycero-3-phosphocholine) were investigated at the molecular level using neutron reflectometry. Representative PFASs with different chain length and functional groups were selected in this study including: perfluorobutane sulfonate (PFBS), perfluorohexanoate (PFHxA), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA). All PFASs were found to interact with the bilayer by incorporation, indicating PFAS ability to accumulate once ingested or taken up by organisms. The interactions were observed to increase with chain length and vary with the functional group as SO2NH2(FOSA)>SO2O-(PFOS)>COO-(PFNA). The PFAS hydrophobicity, which is strongly correlated with perfluorocarbon chain length, was found to strongly influence the interactions. Longer chain PFASs showed higher tendency to penetrate into the bilayer compared to the short-chain compounds. The incorporated PFASs could for all substances but one (PFNA) be removed from the lipid membrane by gentle rinsing with water (2mLmin-1). Although short-chain PFASs have been suggested to be the potentially less bioaccumulative alternative, we found that in high enough concentrations they can also disturb the bilayer. The roughness and disorder of the bilayer was observed to increase as the concentration of PFASs increased (in particular for the high concentrations of short-chain substances i.e. PFHxA and PFBS), which can be an indication of aggregation of PFASs in the bilayer.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and childhood atopic dermatitis: A prospective birth cohort study

Authors: Chen, Q; Huang, R; Hua, L; Guo, Y; Huang, L; Zhao, Y; Wang, X; Zhang, J (2018) Environmental Health: A Global Access Science Source 17:1-12. HERO ID: 4238372

[Less] BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been reported . . . [More] BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been reported to suppress immune function. However, previous studies on prenatal exposure to PFASs and allergic disorders in offspring provided inconsistent results. We aimed to examine the association between prenatal exposure to PFASs and childhood atopic dermatitis (AD) in offspring up to 24 months of age.

METHODS: A prospective birth cohort study involving 1056 pregnant women was conducted in two hospitals in Shanghai from 2012 to 2015. Prenatal information was collected by an interview with the women and from medical records. Fetal umbilical cord blood was collected at birth. Cord blood plasma PFASs were measured. Children were followed at 6, 12 and 24 months and information on the development of AD was recorded. AD was diagnosed by 2 dermatologists independently based on the questionnaires. Multiple logistic regression was used to compute odds ratio (OR) and corresponding 95% confidence interval (CI) for the association between AD and each PFASs, adjusting for potential confounders.

RESULTS: A total of 687 children completed a 2-year follow-up visit and had PFASs measurement. AD was diagnosed in 173 (25.2%) children during the first 24 months. In female children, a log-unit increase in perfluorooctanoic acid (PFOA) was associated with a 2.1-fold increase in AD risk (AOR 2.07, 95% CI 1.13-3.80) after adjusting for potential confounders. The corresponding risk was 2.22 (1.07-4.58) for perfluorononanoic acid (PFNA). The highest PFOA quartile was significantly associated with AD (2.52, 1.12-5.68) compared with the lowest quartile. The highest quartile of PFNA, perfluorodecanoic acid (PFDA) and perfluorohexane sulfonic acid (PFHxS) were associated with AD with AOR (95% CI) being 2.14 (0.97-4.74), 2.14 (1.00-4.57), and 2.30 (1.03-5.15), respectively. Additionally, the second quartile of perfluorododecanoic acid (PFDoA) was associated with a 3.2-fold increase in AD risk (3.24, 1.44-7.27). However, no significant associations were found in male children.

CONCLUSIONS: Prenatal exposure to PFOA, PFDA, PFDoA and PFHxS significantly increased the risk of childhood AD in female children during the first 24 months of life. In addition, the associations between AD with prenatal exposure to PFNA were close to statistical significance.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Multigenerational Disruption of the Thyroid Endocrine System in Marine Medaka after a Life-Cycle Exposure to Perfluorobutanesulfonate

Authors: Chen, L; Hu, C; Tsui, MMP; Wan, T; Peterson, DR; Shi, Q; Lam, PKS; Au, DWT; Lam, JCW; Zhou, B (2018) Environmental Science and Technology 52:4432-4439. HERO ID: 4778765

[Less] Accumulation of perfluorobutanesulfonate (PFBS) is frequently detected in biota, raising concerns about . . . [More] Accumulation of perfluorobutanesulfonate (PFBS) is frequently detected in biota, raising concerns about its ecological safety. However, hazardous effects of PFBS remain largely unexplored, especially for endocrine disrupting potency. In the present study, the multigenerational endocrine disrupting potential of PFBS was investigated by exposing F0 marine medaka eggs to PFBS at different concentrations (0, 1.0, 2.9, and 9.5 μg/L) until sexual maturity. The F1 and F2 generations were reared without continued exposure. Thyroidal disturbances were examined in all three generations. PFBS exposure decreased the levels of 3,5,3'-triiodothyronine (T3) in F0 female blood; however, it increased T3 or thyroxine (T4) levels in F0 brains, in which hyperthyroidism suppressed the local transcription of 5'-deiodinase 2 ( Dio2). Obviously decreased T3 was transferred to F1 eggs, although the parental influences were reversed in F1 larvae. Delayed hatching was coupled with elevated T3 levels in F1 larvae. F1 adults showed comparable symptoms of thyroidal disruption with F0 adults. A slight recovery was noted in the F2 generation, although F2 larvae still exhibited thyroid disruption and synthesized excessive T4. Our results suggested that the offspring suffered more severe dysfunction of the thyroidal axis albeit without direct exposure. This study provided the first molecular insight about PFBS toxicology on the thyroid, beneficial to both human and environmental risk assessment.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Biomonitoring PFAAs in blood and semen samples: Investigation of a potential link between PFAAs exposure and semen mobility in China

Authors: Song, X; Tang, S; Zhu, H; Chen, Z; Zang, Z; Zhang, Y; Niu, X; Wang, X; Yin, H; Zeng, F; He, C (2018) Environment International 113:50-54. HERO ID: 4220306

[Less] Perfluoroalkyl acids (PFAAs) have been suspected to act as endocrine disruptors and adversely affect . . . [More] Perfluoroalkyl acids (PFAAs) have been suspected to act as endocrine disruptors and adversely affect human reproductive health. We aimed to investigate the association between PFAAs in blood and semen, explore a potential link between PFAAs exposure and semen quality in the population of the Pearl River Delta (PRD) region in China, one of the "world factories". The monitoring results demonstrated that the population (103 male participants) from the PRD region in this study had higher PFAAs levels in blood and semen than some other areas in China. PFOS was found at the highest mean concentrations of 118.16 ng/mL in blood and 5.31 ng/mL in semen among the nine PFAAs. Significant associations were found between concentrations of several analytes in blood and semen, including Σ9 PFAAs (r = 0.475, P < .01), PFOA (r = 0.215, P = .029), PFHS (r = 0.458, P < .01) and PFOS (r = 0.981, P < .01). BMI was the most important factor to PFAAs, but there was no significant difference in PFAAs concentrations in blood and semen collected from participants with different smoking and drinking habits, education background and occupations. Negative correlations were significantly observed between sperm motility and PFBA, PFPeA, PFHxA, PFBS, PFOA, PFHS, PFOS and Σ9PFAAs in semen. Therefore, exposure to PFAAs may result in a decline in semen mobility in participants from the PRD region.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Different biotransformation behaviors of perfluorooctane sulfonamide in wheat (Triticum aestivum L.) from earthworms (Eisenia fetida)

Authors: Zhao, S; Zhou, T; Wang, B; Zhu, L; Chen, M; Li, D; Yang, L (2018) Journal of Hazardous Materials 346:191-198. HERO ID: 4234855

[Less] Perfluorooctane sulfonamide (PFOSA) is a precursor of perfluorooctane sulfonic acid (PFOS) and can be . . . [More] Perfluorooctane sulfonamide (PFOSA) is a precursor of perfluorooctane sulfonic acid (PFOS) and can be broken down to PFOS in environment and biota. In the present work, PFOSA was spiked in soil and its biodegradation in soil, uptake and metabolism in wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) were investigated. The results indicated that PFOSA could be biodegraded to highly stable PFOS, which has the same perfluorinated carbon chain length as PFOSA, by microbes in soil. PFOSA could be taken up by wheat root and earthworm from soil with higher bioaccumulation ability than PFOS. In both wheat and earthworms, PFOSA also degraded to PFOS. However, other shorter-chain perfluoroalkane sulfonates (PFSAs), including perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS), were observed in wheat, but not in soil and earthworms, suggesting that wheat displayed distinctly different degradation mechanisms to PFOSA from soil microbes and earthworms.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Cellular accumulation and lipid binding of perfluorinated alkylated substances (PFASs) - A comparison with lysosomotropic drugs

Authors: Sanchez Garcia, D; Sjödin, M; Hellstrandh, M; Norinder, U; Nikiforova, V; Lindberg, J; Wincent, E; Bergman, Å; Cotgreave, I; Munic Kos, V (2018) Chemico-Biological Interactions 281:1-10. HERO ID: 4234856

[Less] Many chemicals accumulate in organisms through a variety of different mechanisms. Cationic amphiphilic . . . [More] Many chemicals accumulate in organisms through a variety of different mechanisms. Cationic amphiphilic drugs (CADs) accumulate in lysosomes and bind to membranes causing phospholipidosis, whereas many lipophilic chemicals target adipose tissue. Perfluoroalkyl substances (PFASs) are widely used as surfactants, but many of them are highly bioaccumulating and persistent in the environment, making them notorious environmental toxicants. Understanding the mechanisms of their bioaccumulation is, therefore, important for their regulation and substitution with new, less harmful chemicals. We compared the highly bioaccumulative perfluorooctanesulfonic acid PFOS to its three less bioaccumulative alternatives perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutane sulfonic acid (PFBS), in their ability to accumulate and remain in lung epithelial cells (NCI-H292) and adipocytes (3T3-L1K) in vitro. As a reference point we tested a set of cationic amphiphilic drugs (CADs), known to highly accumulate in cells and strongly bind to phospholipids, together with their respective non-CAD controls. Finally, all compounds were examined for their ability to bind to neutral lipids and phospholipids in cell-free systems. Cellular accumulation and retention of the test compounds were highly correlated between the lung epithelial cells and adipocytes. Interestingly, although an anion itself, intensities of PFOS accumulation and retention in cells were comparable to those of CAD compounds, but PFOS failed to induce phospholipidosis or alter lysosomal volume. Compared to other lipophilicity measures, phospholipophilicity shows the highest correlation (Rˆ2 = 0.75) to cellular accumulation data in both cell types and best distinguishes between high and low accumulating compounds. This indicates that binding to phospholipids may be the most important component in driving high cellular accumulation in lung epithelial cells, as well as in adipocytes, and for both CADs and bioaccumulating PFASs. Obtained continuous PLS models based on compound's affinity for phospholipids and neutral lipids can be used as good prediction models of cellular accumulation and retention of PFASs and CADs.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants

Authors: Zhao, S; Zhou, T; Zhu, L; Wang, B; Li, Z; Yang, L; Liu, L (2018) Environmental Pollution 235:404-410. HERO ID: 4234854

[Less] N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor . . . [More] N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants.