Health & Environmental Research Online (HERO)


FtOH 6:2 (647-42-7)


127 References Were Found:

Technical Report
Technical Report

Environment tier II assessment for indirect precursors to short-chain perfluorocarboxylic acids

Author: NICNAS (2017) Australian Government, Department of Health, National Industrial Chemicals Notification and Assessment Scheme. HERO ID: 3860060


Archival Material
Archival Material

Danish (Q)SAR database: [FtOH 6:2 CASRN 647-42-7]

Author: DTU Food (2017) HERO ID: 3980824


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Fluorophilicity and lipophilicity of fluorinated rhodamines determined by their partition coefficients in biphasic solvent systems

Authors: Jbeily, M; Kressler, J (2017) HERO ID: 3859230

[Less] The 1-octanol/water (In P-o/w) and perfluoro(methylcyclohexane)/toluene (In P-PFMC/Tol) partition coefficients . . . [More] The 1-octanol/water (In P-o/w) and perfluoro(methylcyclohexane)/toluene (In P-PFMC/Tol) partition coefficients were measured for four fluorinated rhodamine-based fluorescence dyes (F-rhodamines) functionalized with F-ponytails of various lengths CnH2n-CmF2m+1 (n = 1,2 and m = 3,7,8,10) at both amine groups. Here, the In P-o/w accounts usually for the lipophilic-hydrophilic ratio in ageous (biological) media whereas the In P-PFMC/Tol is a standard value for the description of the fluorophilic-lipophilic ratio. Both partition coefficients correlated with the CmF2m+1/CnH2n ratio, but not directly with the length of the F-ponytails. The ability of the F-rhodamines to incorporate into the hydrophobic part of the bilayer of giant unilamellar vesicles (GUVs) of 1,2-dioleoyl-sn-glycero-3-phosphbcholine (DOPC) mixed with 1H,1H,2H,2H-perfluoro-1-octanol (F6H2OH) using confocal laser scanning microscopy was tested and the partitioning of the F-rhodamines into the mixed GUVs could not be explained exclusively using the two In P values mentioned above. Two other partition coefficients between F6H2OH/W (In P-F6H2OH/W) and perfluoro-n-octane/n-octane (In PF-oct/oct) were measured. The In PF-oct/oct correlated in a comparable way with the In P-PFMC/Tol, whereas In P-F6H2OH/W accounting for the fluorophilic-hydrophilic ratio correlated with the length of the F-ponytails and additionally clarified the different staining abilities of the synthesized F-rhodamines in the mixed GUVs. (C) 2016 Elsevier B.V. All rights reserved.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Synthesis of fluorinated polycarbonate-based polyurethane acrylate for UV-curable coatings

Authors: Liu, J; Wang, B; Yuan, Yan; Liu, Ren; Li, Z; Liu, X (2017) HERO ID: 3859231

[Less] Fluorinated polycarbonate-based UV-curable polyurethane acrylate (F-PCUA) was synthesized by incorporating . . . [More] Fluorinated polycarbonate-based UV-curable polyurethane acrylate (F-PCUA) was synthesized by incorporating 1H, 1H, 2H, 2H-Perfluoro-1-octanol to the end of polycarbonate-based PUA chains. The structure of F-PCUA was determined by H-1-NMR, F-19-NMR, and FTIR analyses. The physical, surface, and thermal properties of F-PCUA were also examined. The F-PCUA was used as a hydrophobic additive in PUA coatings, and the water and oil wettability of the UV-cured film was investigated by contact angle measurements. The results showed that the coating system had great hydrophobicity. Furthermore, X-ray photoelectron spectroscopy research confirmed that a hydrophobic fluorine-enriched surface was obtained in the coating system. Moreover, the mechanical and chemical properties of the hydrophobic coatings did not show deterioration with the introduction of elemental F.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Fluorinated Candle Soot as the Lubricant Additive of Perfluoropolyether

Authors: Huang, G; Yu, Q; Ma, Z; Cai, M; Zhou, F; Liu, W (2017) Tribology Letters 65. HERO ID: 3857371

[Less] In order to improve the tribological properties of perfluoropolyethers (PFPE), fluorinated candle soot . . . [More] In order to improve the tribological properties of perfluoropolyethers (PFPE), fluorinated candle soot is adopted as the lubricant additive because of their special onion-like structure. The candle soot particles (CSP) are modified by 1H, 1H, 2H, 2H-perfluorooctanol (CSP-PFHE nanoparticles), and after the fluorination, they exhibit good dispersivity in PFPE. The mixtures composed of CSP-PFHE nanoparticles and PFPE possess better tribological performance than neat PFPE under different test conditions including variable temperature, the irradiation of atomic oxygen and extreme pressure. The reason can be attributed to that the graphene layers are exfoliated from the surfaces of nanoparticles and adhere onto the steel surfaces to form the tribofilm, which can protect the sliding pairs surfaces from friction and severe wear. Meanwhile, the redundant nanoparticles act as the rolling bearing between the sliding surfaces to decrease the wear and some are packed into the corrosion pits generated by PFPE to prevent further erosion in the process of friction. At the end, the lubricating mechanism of CSP-PFHE nanoparticles as additives of PFPE is proposed based on the test results of scanning electron microscope, contact electrical resistance and X-ray photoelectron spectroscopy.

Technical Report
Technical Report

Registration dossier: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol: CAS number 647-42-7: General information

Author: ECHA (2017) Helsinki, Finland: European Chemicals Agency. [Fact Sheet] HERO ID: 3860051


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Impact of 6:2 fluorotelomer alcohol aerobic biotransformation on a sediment microbial community

Authors: Zhang, S; Merino, N; Wang, N; Ruan, T; Lu, X (2017) Science of the Total Environment 575:1361-1368. HERO ID: 3857384

[Less] Sediment microbial communities are responsible for many chemical biotransformation processes in the . . . [More] Sediment microbial communities are responsible for many chemical biotransformation processes in the aquatic environment and play a critical role in various ecosystems and biogeochemical cycling. However, the impact of polyfluoroalkyl substances on sediment microbial communities remains unclear. These substances are increasingly being used in consumer and industrial products to replace environmentally persistent perfluoroalkyl substances. In this study, we investigated the effects of low (5mg/L) and high (15mg/L) doses of 6:2 fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] on the structure of a sediment microbial community. 6:2 FTOH biotransformation was rapid in the sediment mixture with a half-life <3days, regardless of the initial doses. After 28days, major products produced in the high dose condition included 28mol% 5:2 sFTOH [F(CF2)5CH(OH)CH3], 9.6mol% 5:3 Acid [F(CF2)5CH2CH2COOH] and 11mol% PFHxA [F(CF2)5COOH], while 73mol% 5:2 sFTOH, 23mol% 5:3 Acid and 26mol% PFHxA were observed in the low dose condition. In the original (control) sediment without 6:2 FTOH dosing, Proteobacteria was the predominant microorganism (18%), followed by Chloroflexi (14%), Verrucomicrobia (13%), Firmicutes (3.4%), Bacterioidetes (2.4%), Actinobacteria (1.7%) and Planctomycetes (1.3%). The presence of 6:2 FTOH and the accumulation of transient transformation products in the sediment exerted selection pressure on the microbial taxonomic distribution and diversity. Our observations indicate that potential 6:2 FTOH degraders and tolerant strains, such as Dokdonella spp., Thauera spp., Albidovulum spp. and Caldanaerovirga spp., existed in the sediment mixture and began to dominate over time. This suggests that these genera might have higher tolerance towards elevated 6:2 FTOH and its transformation products. These findings on the characterization of sediment microbial community stability and dynamics will help predict changes in response to perfluoroalkyl and polyfluoroalkyl substances and also help identify robust microbial strains to degrade polyfluoroalkyl substances in the environment.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Aerobic biodegradation of 2 fluorotelomer sulfonamide-based aqueous film-forming foam components produces perfluoroalkyl carboxylates

Authors: D'Agostino, LA; Mabury, SA (2017) Environmental Toxicology and Chemistry 36:2012-2021. HERO ID: 3859275

[Less] The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), . . . [More] The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and 6:2 fluorotelomer sulfonamide alkylbetaine (FTAB), was investigated over 109 d with aerobic wastewater-treatment plant (WWTP) sludge. Results show that biodegradation of 6:2 FTAA and 6:2 FTAB produces 6:2 fluorotelomer alcohol (FTOH), 6:2 fluorotelomer carboxylic acid (FTCA), 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA), 5:3 FTCA, and short-chain perfluoroalkyl carboxylates (PFCAs). Additional degradation products included 6:2 fluorotelomer sulfonamide (FTSAm), which was a major degradation product in the presence of either active or sterilized sludge, whereas 6:2 fluorotelomer sulfonate (FTSA) production was measured with sterilized sludge only. Six additional degradation products were tentatively identified by quadrupole time-of-flight mass spectrometry (qTOF-MS) and attributed to N-dealkylation and oxidation of 6:2 FTAA. Environ Toxicol Chem 2017;9999:1-10. © 2017 SETAC.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis

Authors: Shi, G; Cui, Q; Pan, Y; Sheng, N; Guo, Y; Dai, J (2017) Aquatic Toxicology 190:53-61. HERO ID: 3859274

[Less] Saturated fluorotelomer carboxylic acids (FTCAs) are intermediates in the degradation of fluorotelomer . . . [More] Saturated fluorotelomer carboxylic acids (FTCAs) are intermediates in the degradation of fluorotelomer alcohols (FTOHs) to perfluorinated carboxylic acids (PFCAs). Recent studies have detected FTCAs in precipitation, surface waters, and wildlife, but few studies have focused on their toxicity. In this study, zebrafish embryos were exposed to different concentrations of 6:2 FTCA (0, 4, 8, and 12mg/L) from 6 to 120h post-fertilization (hpf) to investigate its developmental toxicity. Results showed that 6:2 FTCA exposure decreased the hatching and survival percentages, reduced the heart rate, and increased the malformation of zebrafish embryos. The median lethal concentration of 6:2 FTCA was 7.33mg/L at 120 hpf, which was lower than that of perfluorooctanoic acid (PFOA), thus indicating higher toxicity for zebrafish. The most common developmental malformation was pericardial edema, which appeared in the 8 and 12mg/L 6:2 FTCA-exposed embryos from 60 hpf. Using o-dianisidine staining, we found that the hemoglobin content in embryos was reduced in a concentration-dependent manner after 6:2 FTCA exposure at 72 hpf. Based on quantitative real-time polymerase chain reaction (q-RT-PCR) and whole-mount in situ hybridization, the transcriptional levels of hemoglobin markers (hbae1, hbbe1, and hbae3) were down-regulated at 48 and 72 hpf, even though no observed malformation appeared in zebrafish at 48 hpf. Moreover, 6:2 FTCA exposure decreased the protein level of gata1, a principal early erythrocytic marker, in Tg (gata1:DsRed) transgenic zebrafish at 72 hpf. We analyzed the transcriptional level of other erythrocyte-related genes using q-RT-PCR assay. For heme formation, the transcription of alas2, which encodes the key enzyme for heme biosynthesis, was down-regulated after 6:2 FTCA exposure, whereas the transcription of ho-1, which is related to heme degradation, was up-regulated at 48 and 72 hpf. The transcriptional patterns of gata1 and gata2, which are related to erythroid differentiation, differed. At 48 hpf, the mRNA level of gata2 was significantly increased, whereas that of gata1 exhibited no significant changes in any treatment group. At 72 hpf, the expressions of both were down-regulated in a concentration-dependent manner. Taken together, 6:2 FTCA exposure decreased the erythrocyte number and disrupted erythroid differentiation during zebrafish embryonic development. Our results suggest that 6:2 FTCA can cause developmental toxicity in zebrafish embryos, and that FTCAs exhibit greater toxicity than that of PFCAs.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)?

Authors: Rand, AA; Mabury, SA (2017) Toxicology 375:28-36. [Review] HERO ID: 3455968

[Less] The production and widespread use of poly- and perfluoroalkyl substances (PFAS) has led to their presence . . . [More] The production and widespread use of poly- and perfluoroalkyl substances (PFAS) has led to their presence in the environment, wildlife, and humans. Particularly, the perfluoroalkyl carboxylates (PFCAs) are pervasive throughout the world and have been found at ng/mL concentrations in human blood. PFCAs, especially those having longer carbon chain lengths (≥C6), are associated with developmental and hormonal effects, immunotoxicity, and promote tumor growth in rodents through their role as PPARα agonists. Humans are directly exposed to PFCAs primarily through contaminated food, drinking water, and house dust. However, indirect exposure to PFCAs through the biotransformation of fluorotelomer-based substances may also be a significant, yet relatively underappreciated pathway. We are exposed to fluorotelomer-based substances through use of consumer products, ingestion of food, or from inhalation of dust particles, but the risk of this exposure has been largely uncharacterized. Here, we summarize the work that has been done to characterize toxicity of the classes of fluorotelomer-based substances shown to biotransform to PFCAs: the polyfluoroalkyl phosphate esters (PAPs), fluorotelomer alcohols (FTOHs), fluorotelomer iodides (FTIs), and fluorotelomer acrylate monomers (FTAcs). These fluorotelomer-based substances biotranform to yield PFCAs, yet also form bioactive intermediate metabolites, which have been observed to be more toxic than their corresponding PFCAs. We address what is known regarding the toxicity of the fluorotelomer-based substances and their metabolites, with focus on covalent binding to biological nucleophiles, such as glutathione, proteins, and DNA, as a possible mechanism of toxicity that may influence the risk of indirect exposure to PFCAs.