Health & Environmental Research Online (HERO)


PFHxS (355-46-4)


52 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Peroxisome proliferator-activated receptor alpha-mediated drug toxicity in the liver

Authors: Hedrington, MS; Davis, SN (2018) HERO ID: 4777290

[Less] INTRODUCTION: Drug-induced hepatic injury is the most common cause of acute liver failure . . . [More] INTRODUCTION: Drug-induced hepatic injury is the most common cause of acute liver failure in the United States. Peroxisome proliferator-activated receptor alpha (PPARα)-mediated drugs are included among the approximately 900 natural and synthetic substances, which have shown hepatotoxicity. Areas covered: This review will focus on fibrates - PPARα agonists and their implication in causing liver injury. Expert opinion: Compelling evidence for fibrate-induced hepatotoxicity is not available. Results have been varying because several large randomized clinical trials have reported similar elevations of plasma transaminase levels in fibrate or placebo treated groups. On the other hand, one meta-analysis has reported an increased risk of hepatotoxicity when fibrates are combined with statins. Fibrate induced clinically apparent liver damage has been demonstrated in case reports. However, there is a wide spectrum of clinical phenotypic presentations of these cases (onset of injury, pattern of enzyme elevation and resolution of the symptoms), which reduces the ability to identify specific cause and effect of any putative fibrate-induced hepatotoxicity. Thus, the current recommendations for using fibrates include monitoring of aminotransferase levels especially if combined with statins and discontinuation of the treatment only if the levels persist above three times the upper limit of normal.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Cytochrome P450 induction and xeno-sensing receptors pregnane X receptor, constitutive androstane receptor, aryl hydrocarbon receptor and peroxisome proliferator-activated receptor α at the crossroads of toxicokinetics and toxicodynamics

Authors: Hakkola, J; Bernasconi, C; Coecke, S; Richert, L; Andersson, TB; Pelkonen, O (2018) Basic and Clinical Pharmacology and Toxicology 123:42-50. [Review] HERO ID: 4933751

[Less] Pregnane X receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AHR) and . . . [More] Pregnane X receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AHR) and peroxisome proliferator-activated receptor (PPAR) are ligand-activated transcription factors that regulate expression of many xenobiotic-metabolizing enzymes including several cytochrome P450 (CYP) enzymes. Many xenobiotics induce CYP enzymes through these intracellular receptors and consequently affect toxicokinetics and possible metabolic activation of the receptor ligands and other xenobiotics utilizing similar metabolic pathways. However, it is now apparent that the xenobiotic receptors regulate also many endogenous functions and signalling pathways, and xenobiotic exposure thus may dysregulate an array of fundamental cell functions. This MiniReview surveys and discusses the multifaceted roles of xenobiotic receptors, for which CYP induction may serve as the first alert and possibly a biomarker for exposure to xenobiotics. With the current emergence of the adverse outcome pathway (AOP) concept, these receptors are being and will be assigned as molecular initiating events or key events in numerous discrete toxicity pathways.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The roles of xenobiotic receptors: Beyond chemical disposition

Authors: Mackowiak, B; Hodge, J; Stern, S; Wang, H (2018) Drug Metabolism and Disposition 46:1361-1371. [Review] HERO ID: 5077863

[Less] Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing . . . [More] Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has been extensively characterized and well documented. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the most attention since they regulate the expression of numerous proteins important to drug metabolism and clearance and formulate a central defensive mechanism to protect the body against xenobiotic challenges. However, accumulating evidence has shown that these xenobiotic sensors also control many cellular processes outside of their traditional realms of xenobiotic metabolism and disposition, including physiologic and/or pathophysiologic responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, immune response, and cancer development. This review will highlight recent advances in studying the noncanonical functions of xenobiotic receptors with a particular focus placed on the roles of CAR and PXR in energy homeostasis and cancer development.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

PXR: More than just a master xenobiotic receptor

Authors: Oladimeji, PO; Chen, T (2018) Molecular Pharmacology 93:119-127. [Review] HERO ID: 5161619

[Less] Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately . . . [More] Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately regulates the expression of genes encoding drug-metabolizing enzymes and drug transporters to essentially detoxify and eliminate xenobiotics and endotoxins from the body. In the past several years, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied, and the role of PXR as a xenobiotic sensor has been well established. It is now clear, however, that PXR plays many other roles in addition to its xenobiotic-sensing function. For instance, recent studies have discovered previously unidentified roles of PXR in inflammatory response, cell proliferation, and cell migration. PXR also contributes to the dysregulation of these processes in diseases states. These recent discoveries of the role of PXR in the physiologic and pathophysiologic conditions of other cellular processes provides the possibility of novel targets for drug discovery. This review highlights areas of PXR regulation that require further clarification and summarizes the recent progress in our understanding of the nonxenobiotic functions of PXR that can be explored for relevant therapeutic applications.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Lipotoxicity and the gut-liver axis in NASH pathogenesis

Authors: Marra, F; Svegliati-Baroni, G (2018) Journal of Hepatology 68:280-295. [Review] HERO ID: 5077865

[Less] The pathogenesis of non-alcoholic fatty liver disease, particularly the mechanisms whereby a minority . . . [More] The pathogenesis of non-alcoholic fatty liver disease, particularly the mechanisms whereby a minority of patients develop a more severe phenotype characterised by hepatocellular damage, inflammation, and fibrosis is still incompletely understood. Herein, we discuss two pivotal aspects of the pathogenesis of NASH. We first analyse the initial mechanisms responsible for hepatocellular damage and inflammation, which derive from the toxic effects of excess lipids. Accumulating data indicate that the total amount of triglycerides stored in hepatocytes is not the major determinant of lipotoxicity, and that specific lipid classes act as damaging agents on liver cells. In particular, the role of free fatty acids such as palmitic acid, cholesterol, lysophosphatidylcholine and ceramides has recently emerged. These lipotoxic agents affect the cell behaviour via multiple mechanisms, including activation of signalling cascades and death receptors, endoplasmic reticulum stress, modification of mitochondrial function, and oxidative stress. In the second part of this review, the cellular and molecular players involved in the cross-talk between the gut and the liver are considered. These include modifications to the microbiota, which provide signals through the intestine and bacterial products, as well as hormones produced in the bowel that affect metabolism at different levels including the liver. Finally, the activation of nuclear receptors by bile acids is analysed.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

Authors: Cha, JY; Kim, DH; Chun, KH (2018) Laboratory Animal Research 34:133-139. [Review] HERO ID: 5431767

[Less] Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing . . . [More] Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing global prevalence of obesity and consequently Nonalcoholic fatty liver disease (NAFLD). However, the mechanism for progression of NAFLD to NASH and then cirrhosis is not completely understood, yet. The triggering of these hepatic diseases is thought from hepatocyte injury caused by over-accumulated lipid toxicity. Injured hepatocytes release damage-associated molecular patterns (DAMPs), which can stimulate the Kupffer cells (KCs), liver-resident macrophages, to release pro-inflammatory cytokines and chemokines, and recruit monocyte-derived macrophages (MDMs). The increased activation of KCs and recruitment of MDMs accelerate the progression of NAFLD to NASH and cirrhosis. Therefore, characterization for activation of hepatic macrophages, both KCs and MDMs, is a baseline to figure out the progression of hepatic diseases. The purpose of this review is to discuss the current understanding of mechanisms of NAFLD and NASH, mainly focusing on characterization and function of hepatic macrophages and suggests the regulators of hepatic macrophages as the therapeutic target in hepatic diseases.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis

Authors: Manne, V; Handa, P; Kowdley, KV (2018) Clinics in Liver Disease 22:23-37. [Review] HERO ID: 5431766

[Less] Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders ranging from hepatic . . . [More] Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH) and ultimately may lead to cirrhosis. Hepatic steatosis or fatty liver is defined as increased accumulation of lipids in hepatocytes and results from increased production or reduced clearance of hepatic triglycerides or fatty acids. Fatty liver can progress to NASH in a significant proportion of subjects. NASH is a necroinflammatory liver disease governed by multiple pathways that are not completely elucidated. This review describes the main mechanisms that have been reported to contribute to the pathophysiology of NAFLD and NASH.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice

Authors: Chang, S; Butenhoff, JL; Parker, GA; Coder, PS; Zitzow, JD; Krisko, RM; Bjork, JA; Wallace, KB; Seed, JG (2018) Reproductive Toxicology 78:150-168. HERO ID: 4409324

[Less] Potassium perfluorohexanesulfoante (K+PFHxS) was evaluated for reproductive/developmental toxicity in . . . [More] Potassium perfluorohexanesulfoante (K+PFHxS) was evaluated for reproductive/developmental toxicity in CD-1 mice. Up to 3 mg/kg-d K+PFHxS was administered (n = 30/sex/group) before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups were directly dosed with K+PFHxS for 14 days after weaning. There was an equivocal decrease in live litter size at 1 and 3 mg/kg-d, but the pup-born-to-implant ratio was unaffected. Adaptive hepatocellular hypertrophy was observed, and in 3 mg/kg-d F0 males, it was accompanied by concomitant decreased serum cholesterol and increased alkaline phosphatase. There were no other toxicologically significant findings on reproductive parameters, hematology/clinical pathology/TSH, neurobehavioral effects, or histopathology. There were no treatment-related effects on postnatal survival, development, or onset of preputial separation or vaginal opening in F1 mice. Consistent with previous studies, our data suggest that the potency of PFHxS is much lower than PFOS in rodents.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Perfluorohexane Sulfonate (PFHxS) and a Mixture of Endocrine Disrupters Reduce Thyroxine Levels and Cause Anti-Androgenic Effects in Rats

Authors: Ramhøj, L; Hass, U; Boberg, J; Scholze, M; Christiansen, S; Nielsen, F; Axelstad, M (2018) Toxicological Sciences. HERO ID: 4442260

[Less] The developmental toxicity of perfluorohexane sulfonate (PFHxS) is largely unknown despite widespread . . . [More] The developmental toxicity of perfluorohexane sulfonate (PFHxS) is largely unknown despite widespread environmental contamination and presence in human serum, tissues and milk.To thoroughly investigate PFHxS toxicity in developing rats and to mimic a realistic human exposure situation, we examined a low dose close to human relevant PFHxS exposure, and combined the dose-response studies of PFHxS with a fixed dose of twelve environmentally relevant endocrine disrupting chemicals (EDmix).Two reproductive toxicity studies in time-mated Wistar rats exposed throughout gestation and lactation were performed. Study 1 included control, two doses of PFHxS and two doses of PFHxS+EDmix (n = 5-7). Study 2 included control, 0.05, 5 or 25 mg/kg body weight/day PFHxS, EDmix-only, 0.05, 5 or 25 mg PFHxS/kg plus EDmix (n = 13-20).PFHxS caused no overt toxicity in dams and offspring but decreased male pup birth weight and slightly increased liver weights at high doses and in combination with the EDmix. A marked effect on T4 levels was seen in both dams and offspring, with significant reductions from 5 mg/kg/day. The EDmix caused anti-androgenic effects in male offspring, manifested as slight decreases in anogenital distance, increased nipple retention and reductions of the weight of epididymides, ventral prostrate and vesicular seminalis.PFHxS can induce developmental toxicity and in addition results of the co-exposure studies indicated that PFHxS and the EDmix potentiate the effect of each other on various endpoints, despite their different modes of action. Hence, risk assessment may underestimate toxicity when mixture toxicity and background exposures are not taken into account.

Data/Software
Data/ Software

Products: Perfluorohexanesulfonate (CAS 355-46-4)

Author: LookChem (2017) HERO ID: 3981215