Health & Environmental Research Online (HERO)


PFPeS (2706-91-4)


156 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt

Authors: Timachova, K; Chintapalli, M; Olson, KR; Mecham, SJ; Desimone, JM; Balsara, NP (2017) Soft Matter. HERO ID: 3860590

[Less] Perfluoropolyethers (PFPEs) are polymer electrolytes with fluorinated carbon backbones that have high . . . [More] Perfluoropolyethers (PFPEs) are polymer electrolytes with fluorinated carbon backbones that have high flash points and have been shown to exhibit moderate conductivities and high cation transference numbers when mixed with lithium salts. Ion transport in four PFPE electrolytes with different endgroups was characterized by differential scanning calorimetry (DSC), ac impedance, and pulsed-field gradient NMR (PFG-NMR) as a function of salt concentration and temperature. In spite of the chemical similarity of the electrolytes, salt diffusion coefficients measured by PFG-NMR and the glass transition temperature measured by DSC appear to be uncorrelated to ionic conductivity measured by ac impedance. We calculate a non-dimensional parameter, β, that depends on the salt diffusion coefficients and ionic conductivity. We also use the Vogel-Tammann-Fulcher relationship to fit the temperature dependence of conductivity. We present a linear relationship between the prefactor in the VTF fit and β; both parameters vary by four orders of magnitude in our experimental window. Our analysis suggests that transport in electrolytes with low dielectric constants (low β) is dictated by ion hopping between clusters.

Journal Article
Journal Article

Patellofemoral pain in athletes

Authors: Petersen, W; Rembitzki, I; Liebau, C (2017) 8:143-154. [Review] HERO ID: 3860591

[Less] Patellofemoral pain (PFP) is a frequent cause of anterior knee pain in athletes, which affects patients . . . [More] Patellofemoral pain (PFP) is a frequent cause of anterior knee pain in athletes, which affects patients with and without structural patellofemoral joint (PFJ) damage. Most younger patients do not have any structural changes to the PFJ, such as an increased Q angle and a cartilage damage. This clinical entity is known as patellofemoral pain syndrome (PFPS). Older patients usually present with signs of patellofemoral osteoarthritis (PFOA). A key factor in PFPS development is dynamic valgus of the lower extremity, which leads to lateral patellar maltracking. Causes of dynamic valgus include weak hip muscles and rearfoot eversion with pes pronatus valgus. These factors can also be observed in patients with PFOA. The available evidence suggests that patients with PFP are best managed with a tailored, multimodal, nonoperative treatment program that includes short-term pain relief with nonsteroidal anti-inflammatory drugs (NSAIDs), passive correction of patellar maltracking with medially directed tape or braces, correction of the dynamic valgus with exercise programs that target the muscles of the lower extremity, hip, and trunk, and the use of foot orthoses in patients with additional foot abnormalities.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Perfluoropolyethers: Development of an All-Atom Force Field for Molecular Simulations and Validation with New Experimental Vapor Pressures and Liquid Densities

Authors: Black, JE; Silva, GMC; Klein, C; Iacovella, CR; Morgado, P; Martins, LFG; Filipe, EJM; Mccabe, C (2017) Journal of Physical Chemistry B 121:6588-6600. HERO ID: 3860592

[Less] A force field for perfluoropolyethers (PFPEs) based on the general optimized potentials for liquid simulations . . . [More] A force field for perfluoropolyethers (PFPEs) based on the general optimized potentials for liquid simulations all-atom (OPLS-AA) force field has been derived in conjunction with experiments and ab initio quantum mechanical calculations. Vapor pressures and densities of two liquid PFPEs, perfluorodiglyme (CF3-O-(CF2-CF2-O)2-CF3) and perfluorotriglyme (CF3-O-(CF2-CF2-O)3-CF3), have been measured experimentally to validate the force field and increase our understanding of the physical properties of PFPEs. Force field parameters build upon those for related molecules (e.g., ethers and perfluoroalkanes) in the OPLS-AA force field, with new parameters introduced for interactions specific to PFPEs. Molecular dynamics simulations using the new force field demonstrate excellent agreement with ab initio calculations at the RHF/6-31G* level for gas-phase torsional energies (<0.5 kcal mol(-1) error) and molecular structures for several PFPEs, and also accurately reproduce experimentally determined densities (<0.02 g cm(-3) error) and enthalpies of vaporization derived from experimental vapor pressures (<0.3 kcal mol(-1)). Additional comparisons between experiment and simulation show that polyethers demonstrate a significant decrease in enthalpy of vaporization upon fluorination unlike related molecules (e.g., alkanes and alcohols). Simulation suggests this phenomenon is a result of reduced cohesion in liquid PFPEs due to a reduction in localized associations between backbone oxygen atoms and neighboring molecules.

Journal Article
Journal Article

Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

Authors: Chung, PilS; Song, W; Biegler, LT; Jhon, MS (2017) HERO ID: 3860653

[Less] During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic . . . [More] During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, weexamine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G '') by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications. (C) 2017 Author(s).

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces

Authors: Credi, C; Levi, M; Turri, S; Simeone, G (2017) HERO ID: 3860654

[Less] In this work, we provide a simple and straightforward method for the fabrication of stable highly hydrophobic . . . [More] In this work, we provide a simple and straightforward method for the fabrication of stable highly hydrophobic and oleophobic surfaces by applying stereolithography (SL) to perfluoropolyethers (PFPEs). Inspired by the liquid repellency widely shown in nature, our approach enables to easily mimic the interplay between the chemistry and physics by microtexturing low surface tension PFPEs. To this end, UV-curable resins suitable for SL-processing were formulated by blending multifunctional (meth)acrylates PFPEs oligomers with photoinitiator and visible dyes whose content was tuned to tailor resin SL sensitivities. Photocalorimetric studies were also performed to investigate the curing behavior of the different formulations upon SL light exposure. Being the first example of stereolithography applied to PFPEs, stereolithographic processability of new developed PFPEs photopolymer was compared with a standard photoresist taken as benchmark (DL260 (R)). Optimized formulations were characterized by reduced laser penetration depth (<75 mu m) and small critical energies thus enabling for fast printing of micrometric structures. Arrays of cylindrical pillars (85 pm diameter, 400 mu m height) characterized by varied pillars spacing (200 divided by 350 mu m) were rapidly printed with high fidelity as attested by SEM examination. Contact angle measurements in static and dynamic conditions were performed to investigate the surface properties of textured samples using water and oil as the probing liquids. PFPEs liquid repellent performances were compared with those from DL260 (R) textured surfaces arrayed by SL. High water contact angles coupled with low hysteresis asserted that high hydrophobic surfaces were successfully obtained and best-performing textured surfaces were also characterized by high oil repellency. Finally, this study demonstrated that omniphobic surfaces can be easily realized via a single-step, cost-effective, and time-saving process. (C) 2017 Elsevier B.V. All rights reserved.

Journal Article
Journal Article

Multiscale modeling of organic molecules contamination in head-disk interface under high thermal stress

Authors: Song, W; Chung, PilS; Bielger, LT; Jhon, MS (2017) HERO ID: 3860657

[Less] Heat assisted magnetic recording (HAMR) which locally reduces coercivity with a laser pulse, is currently . . . [More] Heat assisted magnetic recording (HAMR) which locally reduces coercivity with a laser pulse, is currently the most promising technology to achieve areal density beyond 10 Tbit/in(2). However, due to the extreme operating condition of HAMR, the head-disk interface (HDI) suffers from extensive depletion and contamination of organic molecules. Our previous studies indicate that the conventional linear perfluoropolyether (PFPE) lubricants/grease molecules are not suitable for the severe thermal stress especially when coupled with external fields as the lubricant layer can be depleted and damaged. To simulate the molecular evaporation phenomena, we introduced novel multiscale modeling scheme, "Collection Of Spheres" model, which can predict mesoscale phenomena based on the atomistic/molecular level details via reduced order method. We have examined how the molecular architect affects evaporation under various degree of thermal stress (e.g., peak temperature and duration). Specifically, we examined several PFPEs (e.g., Z, Zdol, and Ztetraol) to study the effect of back-bone and end group properties on evaporation. Our multiscale model can provide holistic simulation of the HDI and provide molecular design criteria for HAMR device. (C) 2017 Author(s).

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Temporal trends of PFSAs, PFCAs and selected precursors in Australian serum from 2002 to 2013

Authors: Eriksson, U; Mueller, JF; Toms, LL; Hobson, P; Kärrman, A (2017) Environmental Pollution 220:168-177. HERO ID: 3858507

[Less] Per- and polyfluoroalkyl substances (PFASs) are a family of compounds that includes numerous compound . . . [More] Per- and polyfluoroalkyl substances (PFASs) are a family of compounds that includes numerous compound classes. To date, only a subset of these PFASs have been studied thoroughly in the general population. In this study, pooled serum samples from Australia collected in 2002-2013 were analyzed for PFASs according to gender and age (age categories of 0-4 years, 5-15 years, 16-30 years, 31-45 years, 46-60 years, and >60 years), in total 54 pooled samples and 4920 individuals. Compound classes included were perfluorocarboxylic acids (PFCAs), perfluorosulfonic acids (PFSAs), and two groups of PFCA precursor compounds; polyfluoroalkyl phosphate diesters (diPAPs), and fluorotelomer sulfonic acids (FTSAs). Several PFASs that were not reported in previous studies of Australian serum samples were found in this sample set including; diPAPs, FTSAs, perfluoropentane sulfonic acid (PFPeS), perfluoroheptane sulfonic acid (PFHpS), perfluoroheptane carboxylic acid (PFHpA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and perfluorotridecanoic acid (PFTrDA). Various temporal trends were observed with a significant reduction (p < 0.05) between 2002 and 2013 for 8:2 FTSA, perflurohexane sulfonic acid (PFHxS), PFHpS, PFOS, and perflurooctanoic acid (PFOA). Levels of longer-chained PFDA and PFUnDA started to decrease more recently, between 2006 and 2013, while PFDoDA increased during the same time period. Higher levels in younger age groups (0-4 and 5-15 years) compared to adults (>15 years) were found for 8:2 FTSA and PFHpA, while levels of PFHpS, PFOS, PFUnDA, PFDoDA and PFTrDA were higher in adult age groups compared to younger age groups. Gender-specific patterns were seen for PFOA, PFHxS, PFHpS and PFOS, where levels were lower in women. Changes in manufacturing processes were reflected in the temporal time trends, and differences in bioaccumulation potential between homologues could be associated with age trends. Our results emphasize the importance of including emerging classes of PFASs in biomonitoring studies.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Temporal trends of PFSAs, PFCAs and selected precursors in Australian serum from 2002 to 2013 : Supplementary materials

Authors: Eriksson, U; Mueller, JF; Toms, LL; Hobson, P; Kärrman, A (2017) Environmental Pollution 220. HERO ID: 3981676

Abstract: Supplemental materials

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Direct photo-patterning of hyaluronic acid baits onto a fouling-release perfluoropolyether surface for selective cancer cell capture and immobilization

Authors: Credi, C; De Marco, C; Molena, E; Nava, MM; Raimondi, MT; Levi, M; Turri, S (2016) Materials Science and Engineering C: Materials for Biological Applications 62:414-422. HERO ID: 3860594

[Less] A simple photolithographic process for directly patterning glycidyl methacrylate modified hyaluronic . . . [More] A simple photolithographic process for directly patterning glycidyl methacrylate modified hyaluronic acid features onto UV curable perfluoropolyether-based surfaces is presented. Due to the versatility of the developed method, HA spotted areas with different geometrical features could be rapidly and inexpensively designed. In addition, the excellent antifouling and fouling-release properties of the substrates enabled direct HA baits photo-grafting onto PFPEs without further surface passivation or chemical modification to avoid not specific adsorption. The aim of the study was to locally switch the surface properties of the PFPEs from cells and protein repulsive to adherent. Particularly, we exploited HA well-known preferential interactions with CD44 transmembrane receptors to selectively immobilize cancer cells. Living cell arrays offer a higher-resolution visualization of HA-CD44 interactions and may provide a deep insight into understanding molecular mechanisms needed to develop selective therapies and diagnosis against tumor growth.

Journal Article
Journal Article

High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

Authors: Dimzon, IK; Trier, X; Frömel, T; Helmus, R; Knepper, TP; de Voogt, P (2016) 27:309-318. HERO ID: 3860595

[Less] High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated . . . [More] High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ.