Health & Environmental Research Online (HERO)


Squalane (111-01-3)


64 References Were Found:

Technical Report
Technical Report

2,6,10,15,19,23-hexamethyltetracosane: bioaccumulation in aquatic species: fish

Author: ECHA (2018) HERO ID: 5016718


The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Regioselective hydrogenolysis of alga-derived squalane over silica-supported ruthenium-vanadium catalyst

Authors: Nakaji, Y; Nakagawa, Y; Tamura, M; Tomishige, K (2018) HERO ID: 4972383

[Less] Addition effect of 2nd metal to Ru catalysts in hydrogenolysis of squalane was investigated. Addition . . . [More] Addition effect of 2nd metal to Ru catalysts in hydrogenolysis of squalane was investigated. Addition of V gave lower methane selectivity and higher C14-C16 selectivity and the effect was the most remarkable over SiO2 support. However, addition of V decreased the catalyst activity and increased the deposited amount of carbonaceous species. From hydrogenolysis of n-hexadecane, addition of V suppressed the formation of methane via terminal C-C bond dissociation, but the formation via fragmentation was not suppressed. Ru and V valences in Ru-VOx/SiO2 (V/Ru = 0.25) after reduction were 0 and +III, respectively. The size of Ru particles was about 4 nm from XRD even in changing V/Ru ratio. H-2 chemisorption showed that V covered the Ru particles and reduced the size of Ru ensemble. In reuse test, it was difficult to retain the catalyst performance for hydrogenolysis of squalane even with various treatments of the recovered catalyst such as washing with n-hexane, heating in N-2 flow or calcination in air. From XAS analysis, the contact of Ru particles with air caused the aggregation of Ru metal especially when calcined in air.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Particle/Gas Partitioning of Phthalates to Organic and Inorganic Airborne Particles in the Indoor Environment

Authors: Wu, Y; Eichler, CMA; Cao, J; Benning, J; Olson, A; Chen, S; Liu, C; Vejerano, EP; Marr, LC; Little, JC (2018) Environmental Science and Technology 52:3583-3590. HERO ID: 4663144

[Less] The particle/gas partition coefficient Kp is an important parameter affecting the fate and transport . . . [More] The particle/gas partition coefficient Kp is an important parameter affecting the fate and transport of indoor semivolatile organic compounds (SVOCs) and resulting human exposure. Unfortunately, experimental measurements of Kp exist almost exclusively for atmospheric polycyclic aromatic hydrocarbons, with very few studies focusing on SVOCs that occur in indoor environments. A specially designed tube chamber operating in the laminar flow regime was developed to measure Kp of the plasticizer di-2-ethylhexyl phthalate (DEHP) for one inorganic (ammonium sulfate) and two organic (oleic acid and squalane) particles. The values of Kp for the organic particles (0.23 ± 0.13 m3/μg for oleic acid and 0.11 ± 0.10 m3/μg for squalane) are an order of magnitude higher than those for the inorganic particles (0.011 ± 0.004 m3/μg), suggesting that the process by which the particles accumulate SVOCs is different. A mechanistic model based on the experimental design reveals that the presence of the particles increases the gas-phase concentration gradient in the boundary layer, resulting in enhanced mass transfer from the emission source into the air. This novel approach provides new insight into experimental designs for rapid Kp measurement and a sound basis for investigating particle-mediated mass transfer of SVOCs.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Angle-resolved molecular beam scattering of NO at the gas-liquid interface

Authors: Zutz, A; Nesbitt, DJ (2017) HERO ID: 4439503

[Less] This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal . . . [More] This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2Π1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Influence of hydrocarbon species on its adsorption on a VSCR catalyst under simulated diesel engine operating conditions

Authors: Xi, Y; Ottinger, NA; Liu, ZG (2017) Applied Catalysis B: Environmental 217:581-590. HERO ID: 4733946

[Less] Vanadia-SCR (VSCR) is a proven technology for reducing diesel engine NOx emissions using urea hydrolysis . . . [More] Vanadia-SCR (VSCR) is a proven technology for reducing diesel engine NOx emissions using urea hydrolysis derived NH3 as a reductant. It is also known that VSCR is active for hydrocarbon (HC) oxidation. However, HC species from diesel engine exhaust may be adsorbed onto VSCR at low exhaust temperatures such as under low engine load or idle conditions. The adsorbed HC may be gradually transformed into more stable coke during engine operation. The accumulated HC or coke on VSCR can result in decreased NOx conversion efficiency due to blockage of catalyst pores and active sites. In addition, rapid oxidation of accumulated HC or coke can lead to exotherms which can thermally damage the VSCR and may lead to vanadium and tungsten release. This work investigates the fundamental adsorption characteristics of HC species on a state-of-the-art VSCR catalyst in the low temperature region. Dodecane and toluene are used as model molecules for alkane and aromatic species from unburned diesel fuel, while squalane is used as a model molecule for unburned lube oil. (C) 2017 Elsevier B.V. All rights reserved.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Hydrocarbon biodegradation and surfactant production by acidophilic mycobacteria

Authors: Ivanova, AE; Sokolova, DSh; Kanat'eva, AYu (2016) Microbiology 85:317-324. HERO ID: 4968953

[Less] Production of biosurfactants by acidophilic mycobacteria was demonstrated in the course of aerobic degradation . . . [More] Production of biosurfactants by acidophilic mycobacteria was demonstrated in the course of aerobic degradation of hydrocarbons (n-tridecane, n-tricosane, n-hexacosane, model mixtures of D-14-D-17, D(12)aEuro'D-19, and D-9-D-21 n-alkanes, 2,2,4,4,6,8,8-heptamethylnonane, squalane, and butylcyclohexane) and their complex mixtures (hydrocarbon gas condensate, kerosene, black oil, and paraffin oil) under extremely acidic conditions (pH 2.5). When grown on hydrocarbons, the studied bacterial culture AG(S10) caused a decrease in the surface and interfacial tension of the solutions (to the lowest observed values of 26.0 and 1.3 mN/m, respectively) compared to the bacteria-free control. The rheological characteristics of the culture changed only when mycobacteria were grown on hydrocarbons. Neither the medium nor the cell-free culture liquid had the surfactant activity, which indicated formation of an endotype biosurfactant by mycobacteria. Biodegradation of n-alkanes was accompanied by an increase in cell numbers, surfactant production, and changes in the hydrophobicity of bacterial cell surface and in associated phenomena of adsorption and desorption to the hydrocarbon phase. Research on AGS10 culture liquids containing the raw biosurfactant demonstrated the preservation of its activity within a broad range of pH, temperature, and salinity.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds

Authors: Borrowman, CK; Zhou, S; Burrow, TE; Abbatt, JP (2016) Physical Chemistry Chemical Physics 18:205-212. HERO ID: 3075503

[Less] In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally . . . [More] In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The Reactive-Diffusive Length of OH and Ozone in Model Organic Aerosols

Authors: Lee, L; Wilson, K (2016) Journal of Physical Chemistry A 120:6800-6812. HERO ID: 3457694

[Less] A key step in the heterogeneous oxidation of atmospheric aerosols is the reaction of ozone (O3) and . . . [More] A key step in the heterogeneous oxidation of atmospheric aerosols is the reaction of ozone (O3) and hydroxyl radicals (OH) at the gas-particle interface. The formation of reaction products and free radical intermediates and their spatial distribution inside the particle is a sensitive function of the length over which these oxidants diffuse prior to reaction. The reactive-diffusive length of OH and ozone at organic aerosol interfaces is determined by observing the change in the effective uptake coefficient for size-selected model aerosols comprising a reactive core and a thin nanometer-sized (0-12 nm) organic shell. The core and shell materials are selected so that they are immiscible and adopt an assumed core-shell configuration. The results indicate a reactive-diffusive length of 1.4 nm for hydroxyl (OH) radicals in squalane and 1.0 nm for ozone in squalene. Measurements for a purely diffusive system allow for an estimate for diffusion constant (1.6 × 10(-6) cm(2)/s) of ozone in squalane to be determined. The reactive-diffusive length offers a simple first order estimate of how shielding of aerosols by immiscible layers can alter estimates of oxidative lifetimes of aerosols in the atmosphere.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Palladium-Nanoparticles-Intercalated Montmorillonite Clay: A Green Catalyst for the Solvent-Free Chemoselective Hydrogenation of Squalene

Authors: Soni, VK; Sharma, RK (2016) HERO ID: 4972309

[Less] Squalane is an important ingredient in the cosmetic, nutraceutical, and pharmaceutical industries. It . . . [More] Squalane is an important ingredient in the cosmetic, nutraceutical, and pharmaceutical industries. It has also been used as a model compound for the hydrocracking of crude and microalgae oil. Thus, a series of green heterogeneous metal catalysts were prepared to achieve complete hydrogenation of highly unsaturated squalene into squalane. Surface modification of the clay and metal intercalation simultaneously occurred during wet impregnation. The Pd-nanoparticles-intercalated clay with a dominating Pd(111) facet showed the highest reactivity and selectivity. The catalyst was stable with very low Pd leaching (approximate to 0.03 ppm) and was recyclable without losing any significant catalytic activity.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements

Authors: Robinson, ES; Saleh, R; Donahue, NM (2015) Environmental Science and Technology 49:9724-9732. HERO ID: 3009638

[Less] An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for . . . [More] An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.