Health & Environmental Research Online (HERO)


Ammonia


76 References Were Found:

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Ammonia in breath and emitted from skin

Authors: Schmidt, FM; Vaittinen, O; Metsälä, M; Lehto, M; Forsblom, C; Groop, PH; Halonen, L (2013) Journal of Breath Research 7:017109. HERO ID: 1510722

[Less] Ammonia concentrations in exhaled breath (eNH3) and skin gas of 20 healthy subjects were measured on-line . . . [More] Ammonia concentrations in exhaled breath (eNH3) and skin gas of 20 healthy subjects were measured on-line with a commercial cavity ring-down spectrometer and compared to saliva pH and plasma ammonium ion (NH+4), urea and creatinine concentrations. Special attention was given to mouth, nose and skin sampling procedures and the accurate quantification of ammonia in humid gas samples. The obtained median concentrations were 688 parts per billion by volume (ppbv) for mouth-eNH3, 34 ppbv for nose-eNH3, and 21 ppbv for both mouth- and nose-eNH3 after an acidic mouth wash (MW). The median ammonia emission rate from the lower forearm was 0.3 ng cm−2 min−1. Statistically significant (p < 0.05) correlations between the breath, skin and plasma ammonia/ammonium concentrations were not found. However, mouth-eNH3 strongly (p < 0.001) correlated with saliva pH. This dependence was also observed in detailed measurements of the diurnal variation and the response of eNH3 to the acidic MW. It is concluded that eNH3 as such does not reflect plasma but saliva and airway mucus NH+4 concentrations and is affected by saliva and airway mucus pH. After normalization with saliva pH using the Henderson–Hasselbalch equation, mouth-eNH3 correlated with plasma NH+4, which points to saliva and plasma NH+4 being linked via hydrolysis of salivary urea.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath

Authors: Španěl, P; Dryahina, K; Smith, D (2013) Journal of Breath Research 7:017106. HERO ID: 1592035

[Less] Throughout the development of breath analysis research, there has been interest in how the concentrations . . . [More] Throughout the development of breath analysis research, there has been interest in how the concentrations of trace compounds in exhaled breath are related to their concentrations in the ambient inhaled air. In considering this, Phillips introduced the concept of 'alveolar gradient' and judged that the measured exhaled concentrations of volatile organic compounds should be diminished by an amount equal to their concentrations in the inhaled ambient air. The objective of the work described in this paper was to investigate this relationship quantitatively. Thus, experiments have been carried out in which inhaled air was polluted by seven compounds of interest in breath research, as given below, and exhaled breath has been analysed by SIFT-MS as the concentrations of these compounds in the inhaled air were reduced. The interesting result obtained is that all the exogenous compounds are partially retained in the exhaled breath and there are close linear relationships between the exhaled and inhaled air concentrations for all seven compounds. Thus, retention coefficients, a, have been derived for the following compounds: pentane, 0.76 ± 0.09; isoprene, 0.66 ± 0.04; acetone, 0.17 ± 0.03; ammonia, 0.70 ± 0.13, methanol, 0.29 ± 0.02; formaldehyde, 0.06 ± 0.03; deuterated water (HDO), 0.09 ± 0.02. From these data, correction to breath analyses for inhaled concentration can be described by coefficients specific to each compound, which can be close to 1 for hydrocarbons, as applied by Phillips, or around 0.1, meaning that inhaled concentrations of such compounds can essentially be neglected. A further deduction from the experimental data is that under conditions of the inhalation of clean air, the measured exhaled breath concentrations of those compounds should be increased by a factor of 1/(1 - a) to correspond to gaseous equilibrium with the compounds dissolved in the mixed venous blood entering the alveoli. Thus, for isoprene, this is a factor of 3, which we have confirmed experimentally by re-breathing experiments.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion

Authors: Bishop, JM; Verlander, JW; Lee, HW; Nelson, RD; Weiner, AJ; Handlogten, ME; Weiner, ID (2010) American Journal of Physiology: Renal Physiology 299:F1065-F1077. HERO ID: 990428

[Less] Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current . . . [More] Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2–4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion

Authors: Lee, HW; Verlander, JW; Bishop, JM; Nelson, RD; Handlogten, ME; Weiner, ID (2010) American Journal of Physiology: Renal Physiology 299:F369-F379. HERO ID: 990622

[Less] Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) . . . [More] Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry

Authors: Boshier, PR; Marczin, N; Hanna, GB (2010) American Society for Mass Spectrometry. Journal 21:1070-1074. HERO ID: 990681

[Less] Selected ion flow tube mass spectrometry, SIFT-MS, has been used to determine the repeatability of the . . . [More] Selected ion flow tube mass spectrometry, SIFT-MS, has been used to determine the repeatability of the analysis of volatile metabolites within the breath of healthy volunteers, with emphasis on the influence of sampling methodology. Baseline instrument specific coefficients of variability for examined metabolites were as follows: acetone (1%), ammonia (1%), isoprene (2%), propanol (6%), ethanol (7%), acetic acid (7%), and hydrogen cyanide (19%). Metabolite concentration and related product ion count rate were identified as strong determinants of measurement variation. With the exception of ammonia, an orally released metabolite, variability in repeated on-line breath analysis tended to be lower for metabolites of systemic origin. Standardization of sampling technique improved the repeatability of the analysis of selected metabolites. Off-line (bag) alveolar breath sampling, as opposed to mixed (whole) breath sampling, likewise improved the repeatability of the analysis of all metabolites investigated, with the exception of acetic acid. We conclude that SIFT-MS analysis of common volatile metabolites within the breath of healthy volunteers is both reliable and repeatable. For selected metabolites, the finding that repeatability is improved through modification of sampling methodology may have implications in terms of future recommended practices.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Human (13)N-ammonia PET studies: The importance of measuring (13)N-ammonia metabolites in blood

Authors: Keiding, S; Sørensen, M; Munk, OL; Bender, D (2010) Metabolic Brain Disease 25:49-56. HERO ID: 990690

[Less] Dynamic 13N-ammonia PET is used to assess ammonia metabolism in brain, liver and muscle based on kinetic . . . [More] Dynamic 13N-ammonia PET is used to assess ammonia metabolism in brain, liver and muscle based on kinetic modeling of metabolic pathways, using arterial blood 13N-ammonia as input function. Rosenspire et al. (1990) introduced a solid phase extraction procedure for fractionation of 13N-content in blood into 13N-ammonia, 13N-urea, 13N-glutamine and 13N-glutamate. Due to a radioactive half-life for 13N of 10 min, the procedure is not suitable for blood samples taken beyond 5–7 min after tracer injection. By modifying Rosenspire’s method, we established a method enabling analysis of up to 10 blood samples in the course of 30 min. The modified procedure was validated by HPLC and by 30-min reproducibility studies in humans examined by duplicate 13N-ammonia injections with a 60-min interval. Blood data from a 13N-ammonia brain PET study (from Keiding et al. 2006) showed: (1) time courses of 13N-ammonia fractions could be described adequately by double exponential functions; (2) metabolic conversion of 13N-ammonia to 13N-metabolites were in the order: healthy subjects > cirrhotic patients without HE > cirrhotic patients with HE; (3) kinetics of initial tracer distribution in tissue can be assessed by using total 13N-concentration in blood as input function, whereas assessment of metabolic processes requires 13N-ammonia measurements.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Stabling causes a significant increase in the pH of the equine airway

Authors: Whittaker, AG; Love, S; Parkin, TDH; Duz, M; Hughes, KJ (2009) Equine Veterinary Journal 41:940-943. HERO ID: 990649

[Less] Regulation of pH homeostasis in the equine lung is poorly understood. Measurement of exhaled breath . . . [More] Regulation of pH homeostasis in the equine lung is poorly understood. Measurement of exhaled breath condensate (EBC) pH provided a simple, highly repeatable and noninvasive method for the longitudinal investigation of changes in airway pH in response to environmental changes. Stabling of horses was found to lead to a small (approximately 100-200 parts/billion) but significant (P < 0.001) increase in ambient ammonia concentration when compared to pasture. This increase in exposure to ambient ammonia concentration was associated with significant (P = 0.002) increases in EBC pH and exhaled ammonia (P = 0.013). Stable feed/bedding management type had no effect on EBC pH or exhaled ammonia concentration, while ambient ammonia concentration was influenced by stable management type.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Backflux of ammonia from brain to blood in human subjects with and without hepatic encephalopathy

Authors: Sørensen, M; Munk, OL; Keiding, S (2009) Metabolic Brain Disease 24:237-242. HERO ID: 990458

[Less] In patients with hepatic encephalopathy (HE) the blood concentration of ammonia is usually highly elevated. . . . [More] In patients with hepatic encephalopathy (HE) the blood concentration of ammonia is usually highly elevated. Ammonia readily enters brain cells from the blood, and toxic effects of ammonia on brain metabolism and neurotransmission are believed to play a key role in the pathogenesis of HE. It has, however, been a matter of great controversy whether backflux of unmetabolized ammonia (NH(3) + NH(4) (+)) from brain cells to the blood occurs in man. In the present analysis of data from a dynamic PET study of brain (13)N-ammonia metabolism in healthy subjects and cirrhotic patients with and without HE, we provide the first unambiguous evidence for backflux of ammonia from brain cells to the blood in man. The high temporal and spatial resolution of modern PET technology was employed to distinguish between unidirectional blood-brain transport of ammonia and subsequent metabolism of the ammonia in the brain. In all 16 subjects, clearance of the unidirectional transport of (13)N-ammonia from the blood to brain cells (K(1)) was higher than the metabolic clearance of (13)N-ammonia from the blood (K(met)=K(1) k(3)/(k(2)+k(3)). This can only be explained by backflux (k(2)) of ammonia from brain cells to the blood. In conclusion, backflux of ammonia from the brain to the blood does indeed occur in both healthy subjects and cirrhotic patients with and without hepatic encephalopathy.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion

Authors: Lee, HW; Verlander, JW; Bishop, JM; Igarashi, P; Handlogten, ME; Weiner, ID (2009) American Journal of Physiology: Renal Physiology 296:F1364-F1375. HERO ID: 990517

[Less] NH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. . . . [More] NH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. However, ammonia-specific transporters, Mep/Amt proteins, are present in primitive organisms and mammals express orthologs of Mep/Amt proteins, the Rh glycoproteins. These findings suggest that the mechanisms of NH3 movement in mammalian tissues should be reexamined. Rh C glycoprotein (Rhcg) is expressed in the collecting duct, where NH3 secretion is necessary for both basal and acidosis-stimulated ammonia transport. To determine whether the collecting duct secretes NH3 via Rhcg or via lipid-phase diffusion, we generated mice with collecting duct-specific Rhcg deletion (CD-KO). CD-KO mice had loxP sites flanking exons 5 and 9 of the Rhcg gene (Rhcg(fl/fl)) and expressed Cre-recombinase under control of the Ksp-cadherin promoter (Ksp-Cre). Control (C) mice were Rhcg(fl/fl) but Ksp-Cre negative. We confirmed kidney-specific genomic recombination using PCR analysis and collecting duct-specific Rhcg deletion using immunohistochemistry. Under basal conditions, urinary ammonia excretion was less in KO vs. C mice; urine pH was unchanged. After acid-loading for 7 days, CD-KO mice developed more severe metabolic acidosis than did C mice. Urinary ammonia excretion did not increase significantly on the first day of acidosis in CD-KO mice, despite an intact ability to increase urine acidification, whereas it increased significantly in C mice. On subsequent days, urinary ammonia excretion slowly increased in CD-KO mice, but was always significantly less than in C mice. We conclude that collecting duct Rhcg expression contributes to both basal and acidosis-stimulated renal ammonia excretion, indicating that collecting duct ammonia secretion is, at least in part, mediated by Rhcg and not solely by lipid diffusion.

The "refereed" or "peer review" status of a journal comes from the Ulrichsweb Global Serials Directory (http://ulrichsweb.serialssolutions.com/), as supplied by the publisher. The term refers to the system of critical evaluation of manuscripts/articles by professional colleagues or peers. The content of refereed publications is sanctioned, vetted, or otherwise approved by a peer-review or editorial board. The peer-review and evaluation system is utilized to protect, maintain, and raise the quality of scholarly material published in serials. Publications subject to the referee process are assumed, then, to contain higher quality content than those that are not.
Peer Reviewed Journal Article

The gut does not contribute to systemic ammonia release in humans without portosystemic shunting

Authors: Van de Poll, MCG; Ligthart-Melis, GC; Olde Damink, SWM; van Leeuwen, PAM; Beets-Tan, RGH; Deutz, NEP; Wigmore, SJ; Soeters, PB; Dejong, CHC (2008) American Journal of Physiology: Gastrointestinal and Liver Physiology 295:G760-G765. HERO ID: 988479

[Less] The gut is classically seen as the main source of circulating ammonia. However, the contribution of . . . [More] The gut is classically seen as the main source of circulating ammonia. However, the contribution of the intestines to systemic ammonia production may be limited by hepatic extraction of portal-derived ammonia. Recent data suggest that the kidney may be more important than the gut for systemic ammonia production. The aim of this study was to quantify the role of the kidney, intestines, and liver in interorgan ammonia trafficking in humans with normal liver function. In addition, we studied changes in interorgan nitrogen metabolism caused by major hepatectomy. From 21 patients undergoing surgery, blood was sampled from the portal, hepatic, and renal veins to assess intestinal, hepatic, and renal ammonia metabolism. In seven cases, blood sampling was repeated after major hepatectomy. At steady state during surgery, intestinal ammonia release was equaled by hepatic ammonia uptake, precluding significant systemic release of intestinal-derived ammonia. In contrast, the kidneys released ammonia to the systemic circulation. Major hepatectomy led to increased concentrations of ammonia and amino acids in the systemic circulation. However, transsplanchnic concentration gradients after major hepatectomy were similar to baseline values, indicating the rapid institution of a new metabolic equilibrium. In conclusion, since hepatic ammonia uptake exactly equals intestinal ammonia release, the splanchnic area, and hence the gut, probably does not contribute significantly to systemic ammonia release. After major hepatectomy, hepatic ammonia clearance is well preserved, probably related to higher circulating ammonia concentrations.