Health & Environmental Research Online (HERO)


Print Feedback Export to File
1020205 
Journal Article 
Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression 
Dhankher, OP; Li, Y; Rosen, BP; Shi, J; Salt, D; Senecoff, JF; Sashti, NA; Meagher, RB 
2002 
Nature Biotechnology
ISSN: 1087-0156
EISSN: 1546-1696 
20 
11 
1140-1145 
English 
We have developed a genetics-based phytoremediation strategy for arsenic in which the oxyanion arsenate is transported aboveground, reduced to arsenite, and sequestered in thiol-peptide complexes. The Escherichia coli arsC gene encodes arsenate reductase (ArsC), which catalyzes the glutathione (GSH)-coupled electrochemical reduction of arsenate to the more toxic arsenite. Arabidopsis thaliana plants transformed with the arsC gene expressed from a light-induced soybean rubisco promoter (SRS1p) strongly express ArsC protein in leaves, but not roots, and were consequently hypersensitive to arsenate. Arabidopsis plants expressing the E. coli gene encoding gamma-glutamylcysteine synthetase (gamma-ECS) from a strong constitutive actin promoter (ACT2p) were moderately tolerant to arsenic compared with wild type. However, plants expressing SRS1p/ArsC and ACT2p/gamma-ECS together showed substantially greater arsenic tolerance than gamma-ECS or wild-type plants. When grown on arsenic, these plants accumulated 4- to 17-fold greater fresh shoot weight and accumulated 2- to 3-fold more arsenic per gram of tissue than wild type or plants expressing gamma-ECS or ArsC alone. This arsenic remediation strategy should be applicable to a wide variety of plant species. 
IRIS
• Arsenic (Inorganic)
     1. Literature
          PubMed
          Toxline, TSCATS, & DART
          Web of Science
     4. Adverse Outcome Pathways/Networks Screening
          Excluded/Not relevant
               Title/Abstract screening
• Arsenic MOA
     1. MOA Literature Screening
          MOA Cluster
     3. Excluded
          Other not relevant
               Dragon Screened
• Inorganic Arsenic (7440-38-2) [Final 2025]
     1. Initial Lit Search
          PubMed
          WOS
          ToxNet
     4. Considered through Oct 2015
     6. Cluster Filter through Oct 2015
          iAs MOA Literature Categorization
               Cytotoxicity and Regenerative Proliferation
               Epigenetic Mechanisms