Health & Environmental Research Online (HERO)


Print Feedback Export to File
1597316 
Journal Article 
Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions 
Wang, Z; Bush, RT; Sullivan, LA; Liu, J 
In Press 
Yes 
Environmental Science and Technology
ISSN: 0013-936X
EISSN: 1520-5851 
47 
12 
6486-6492 
English 
Arsenic and chromium are often abundant constituents of acid mine drainage (AMD) and are most harmful as arsenite (As(III)) and hexavalent (Cr(VI)). To simultaneously change their oxidation state from As(III) to As(V), and Cr(VI) to Cr(III), is a potentially effective and attractive strategy for environmental remediation. The coabundance of As(III) and Cr(VI) in natural environments indicates their negligible direct interaction. The addition of H2O2 enables and greatly accelerates the simultaneous oxidation of As(III) and reduction of Cr(VI). These reactions are further enhanced at acidic pH and higher concentrations of Cr(VI). However, the presence of ligands (i.e., oxalate, citrate, pyrophosphate) greatly retards the oxidation of As(III), even though it enhances the reduction of Cr(VI). To explain these results we propose a reaction mechanism where Cr(VI) is primarily reduced to Cr(III) by H2O2, via the intermediate tetraperoxochromate Cr(V). Cr(V) is then involved in the formation of (•)OH radicals. In the presence of ligands, the capacity of Cr(V) to form (•)OH radicals, which are primarily responsible for As(III) oxidation, is practically inhibited. Our findings demonstrate the feasibility for the coconversion of As(III) and Cr(VI) in AMD and real-world constraints to this strategy for environmental remediation. 
IRIS
• Arsenic Hazard ID
          PubMed
          Considered New
          PubMed
          ToxNet
          Considered New
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
     2. Lit Search Updates through Oct 2015
          PubMed
          ToxNet
          Considered
     7. Other Studies through Oct 2015
          Other
• Arsenic (Inorganic)
     1. Literature
          Lit search updates through Oct 2015
     3. Hazard ID Screening
          Other potentially supporting studies
• Chromium VI
     Considered Studies
          Electronic Search
     Excluded
          Other Not Pertinent
     Lit Search Updates
          Jan to June 2013
          June 2013 - Jan 2014