Health & Environmental Research Online (HERO)


Print Feedback Export to File
3227299 
Journal Article 
Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States 
Simkin, SM; Allen, EB; Bowman, WD; Clark, CM; Belnap, J; Brooks, ML; Cade, BS; Collins, SL; Geiser, LH; Gilliam, FS; Jovan, SE; Pardo, LH; Schulz, BK; Stevens, CJ; Suding, KN; Throop, HL; Waller, DM 
2016 
Yes 
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
EISSN: 1091-6490 
113 
15 
4086-4091 
English 
Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha(-1)⋅y(-1), we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha(-1)⋅y(-1)in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States. 
nitrogen deposition; plant species richness; diversity; soil pH; climate 
• ISA NOxSOxPM Ecology (2018)
     Cited in First Draft
          Chapter 1
          Chapter 6
          Appendix C: Case Studies
               California
               Northeast US
               Rocky Mountain
               Southeast US
     Cited in the Second Draft
          Chapter 1
          Appendix 5
          Appendix 6
          Appendix 13
          Appendix 16
               16.1 Northeast
               16.3 Southeast
               16.5 Rocky Mountains
               16.6 Southern California
• ISA NOxSOxPM Ecology (2020- Final Project Page)
     Cited
          Integrated Synthesis
          Appendix 5
          Appendix 6
          Appendix 13
          Appendix 16
               16.1 Northeast
               16.3 Southeast
               16.5 Rocky Mountains
               16.6 Southern California