Health & Environmental Research Online (HERO)


Print Feedback Export to File
3719999 
Journal Article 
Potential of Zanthoxylum leprieurii as a source of active compounds against drug resistant Mycobacterium tuberculosis 
Bunalema, L; Fotso, GW; Waako, P; Tabuti, J; Yeboah, SO 
2017 
Yes 
BMC Complementary and Alternative Medicine
ISSN: 1472-6882
EISSN: 14726882 
17 
89 
English 
BACKGROUND: Tuberculosis (TB) is still a global health problem mainly due to development of resistance and co-infection with the Human immune Virus (HIV). Treatment of multi and extensively drug resistant TB requires use of second line drugs which are less efficacious, expensive and very toxic. This has necessitated a need to search for new treatment regimens especially from medicinal plants. Zanthoxylum leprieurii, a plant species from Rutaceae is used locally in the treatment of tuberculosis in Uganda. The aim of the study was to isolate, identify and characterize bio active compounds from Z. leprieurii stem bark with antimycobacterial activity.

METHODS: Crude extracts, fractions and compounds from air dried stem bark of Z. leprieurii were tested against pan sensitive (H37rv), isoniazid resistant (TMC 301) and rifampicin resistant (TMC 331) strains of M. tuberculosis using micro plate alamar blue assay. Isolation of active compounds was done by using column chromatography and thin layer chromatography. They were analysed using nuclear magnetic resonance spectroscopy and mass spectroscopy.

RESULTS: The methanol extract had minimum inhibitory concentrations (MIC) of 47.5, 75.3 and 125.0 μg/ml on the pan sensitive strain, rifampicin resistant and isozianid resistant strains of M. tuberculosis respectively. The chloroform extract had MIC values of 260 μg/ml agnaist the pan sensitive strain and 156 μg/ml on the rifampicin resistant strain. Of the sixteen fractions from the methanol extract, fraction Za4 (MIC = 6.3 μg/mL, 23.0 μg/mL, 11.7 μg/mL) and Za6 (MIC = 11.7 μg/mL 31.2 μg/ml, 31.2 μg/ml) were the most active. Three acridone alkaloids; hydroxy-1, 3-dimethoxy-10-methyl-9-acridone (1), 1-hydroxy-3-methoxy-10-methyl-9-acridone (2) and 3-hydroxy-1, 5, 6-trimethoxy-9-acridone (3) were isolated from Za4 and Za6. The MIC of compound 3 was found to be 5.1 μg/ml, 4.5 μg/ml and 3.9 μg/ml on H37rv, TMC 331 and TMC 301 while that of 1 was found to be 1.5 μg/ml, 8.3 μg/ml and 3.5 μg/ml respectively.

CONCLUSION: The results of this study suggest that Z. leprieurii is active on resistant strains of M. tuberculosis and could be a potential source of new leads against resistant tuberculosis. It also verifies the local use of the plant in treatment of tuberculosis. 
IRIS
• Chloroform 2018 Update
     TITLE AND ABSTRACT REVIEW
          Excluded Studies
• Chloroform Combined (current)
     Chloroform (2018 update)
          TITLE AND ABSTRACT REVIEW
               Excluded Studies
     Chloroform (current)
          Literature Search: Jan 2009 - March 2017
               ToxNet