Health & Environmental Research Online (HERO)


Print Feedback Export to File
3859255 
Journal Article 
Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States 
Gewurtz, SB; Martin, PA; Letcher, RJ; Burgess, NM; Champoux, L; Elliott, JE; Weseloh, DV 
2016 
Science of the Total Environment
ISSN: 0048-9697
EISSN: 1879-1026 
565 
440-450 
English 
A large spatial dataset of perfluoroalkyl acid (PFAA) concentrations in eggs of herring gulls (Larus argentatus or congeneric species) collected from late April to early June between 2009 and 2014 from 28 colonies across Canada and parts of the Unites States was used to evaluate location-specific patterns in chemical concentrations and to generate hypotheses on the major sources affecting PFAA distributions. The highly bioaccumulative perfluorooctane sulfonic acid (PFOS) as well as other perfluoroalkyl sulfonic acids (PFSAs) showed the greatest concentrations in eggs from the lower Great Lakes of southern Ontario as well as from the St. Lawrence River. Despite the 2000 to 2002 phase-out of PFOS and related C8 chemistry by the major manufacturer at the time, ongoing losses from consumer products during use and disposal in urban/industrial locations continue to be major sources to the environment and are influencing the spatial trends of PFOS in Canada. In comparison to PFOS, perfluoroalkyl carboxylic acids (PFCAs) were not as concentrated in eggs in close proximity to urbanized/industrialized centers, but had surprisingly elevated levels in relatively remote regions such as Great Slave Lake, NT and East Bay in Hudson Bay, NU. The present results support the hypothesis that atmospheric transport and degradation of precursor chemicals, such as the fluorotelomer alcohols 8:2 FTOH and 10:2 FTOH, are influencing the spatial trends of PFCAs in Canada. A power analysis conducted on a representative urbanized/industrialized colony in the Toronto Harbour, ON, and a relatively remote colony in Lake Superior, emphasized the importance of consistent and long-term data collection in order to detect the anticipated changes in PFAA concentrations in Canadian gull eggs. 
Perfluoroalkyl acids; Gulls; Sources; Canada; Spatial trends; Power analysis 
• Additional PFAS (formerly XAgency)
• Expanded PFAS SEM (formerly PFAS 430)
     Litsearch: September 2019
          PubMed
     Not prioritized for screening
     Perfluorooctane
• FtOH 8:2
     Literature Search
          Pubmed
          WOS
     Screening Results
          Excluded/Not on Topic
• ^Per- and Polyfluoroalkyl Substances (PFAS)
     PFOA (335-67-1) and PFOS (1763-23-1)
          Literature Search – Adverse outcome pathway (2015-present)
               Pubmed
               WOS
     FtOH 8:2 (678-39-7)
          Literature Search
               Pubmed
               WOS
• PFAS 150
     Literature Search Update December 2020
          PubMed
     Literature Search August 2019
          PubMed
          Web of Science
     Not prioritized for screening
     8:2 Fluorotelomer alcohol
     Perfluorooctane
     Perfluorooctanesulfonic acid
• PFOA (335-67-1) and PFOS (1763-23-1)
     Literature Search – Adverse outcome pathway (2015-present)
          Pubmed
          WOS
     Screening Results
          Excluded/Not on Topic
     Literature Search Update (2013-2019)
          PubMed
          WOS