Phase transition and domain formation in the gibbs adsorbed films of long-chain alcohols

Aratono, M; Murakami, D; Matsubara, H; Takiue, T

HERO ID

3859469

Reference Type

Journal Article

Year

2009

Language

English

PMID

19358544

HERO ID 3859469
In Press No
Year 2009
Title Phase transition and domain formation in the gibbs adsorbed films of long-chain alcohols
Authors Aratono, M; Murakami, D; Matsubara, H; Takiue, T
Journal Journal of Physical Chemistry B
Volume 113
Issue 18
Page Numbers 6347-6352
Abstract The adsorption behavior of 1,1,2,2,-tetrahydroheptadecafluorodecanol (FC10OH), 1-eicosanol (C20OH), and their mixtures at the hexane solution/water interface is summarized briefly and examined from the viewpoints of interfacial tensions in the presence of domains, domain formation, and the correlation between the phase transition and the miscibility of film forming substances in the adsorbed films. The two-dimensional analogue of the Laplace equation showed that the interfacial tension is always higher in the presence of domains than that in the absence of them. The higher tendency of domain formation of FC10OH compared to C20OH is mainly ascribed to the excess Gibbs energy of mixing of fluorocarbon chains and hydrocarbon solvent being positive and to the interaction energy between domains being more stable against cohesion for FC10OH than for C20OH. The thermodynamic equations derived here suggested the heteroazeotropy in the phase diagram of adsorption and the temperature dependence of interfacial tension at the phase transition points, which are in accord with the experimental findings qualitatively.
Doi 10.1021/jp9001803
Pmid 19358544
Wosid WOS:000265687500022
Is Certified Translation No
Dupe Override No
Comments Scopus URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66349129151&doi=10.1021%2fjp9001803&partnerID=40&md5=97408fe642dfce3bdef079b0d281fd48
Is Public Yes
Language Text English