Health & Environmental Research Online (HERO)


Print Feedback Export to File
3981335 
Journal Article 
Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter 
Kaserzon, SL; Heffernan, AL; Thompson, K; Mueller, JF; Gomez Ramos, MJ 
2017 
Yes 
Chemosphere
ISSN: 0045-6535
EISSN: 1879-1298 
182 
656-664 
English 
Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL(-1), and 46% at 0.1 ng mL(-1) when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL(-1), respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl(-) perfluorooctanesulfonic acid), at 0.8 ng mL(-1). The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants between an affected and control site and or timeframe is warranted. 
suspect screening; water monitoring; LC-QTOF; data reduction strategy; hazard identification 
PFAS
• Additional PFAS (formerly XAgency)
• ^Per- and Polyfluoroalkyl Substances (PFAS)
     PFOA (335-67-1) and PFOS (1763-23-1)
          Literature Search – Adverse outcome pathway (2015-present)
               Pubmed
               WOS
• PFAS 150
     Literature Search August 2019
          PubMed
     Not prioritized for screening
     Perfluorooctanesulfonic acid
• PFNA
     Litsearch Update 2017-2018
          Pubmed
     Literature Search
          Pubmed
• PFOA (335-67-1) and PFOS (1763-23-1)
     Literature Search – Adverse outcome pathway (2015-present)
          Pubmed
          WOS
     Screening Results
          Excluded/Not on Topic
     Literature Search Update (2013-2019)
          PubMed
          WOS