Health & Environmental Research Online (HERO)


Print Feedback Export to File
4829406 
Journal Article 
Improving the Back Surface Field on an Amorphous Silicon Carbide Thin-Film Photocathode for Solar Water Splitting 
Perez-Rodriguez, P; Cardenas-Morcoso, D; Digdaya, IA; Raventos, AM; Procel, P; Isabella, O; Gimenez, S; Zeman, M; Smith, WA; Smets, AHM 
2018 
Yes 
ChemSusChem
ISSN: 1864-5631
EISSN: 1864-564X 
11 
11 
1797-1804 
English 
Amorphous silicon carbide (a-SiC:H) is a promising material for photoelectrochemical water splitting owing to its relatively small band-gap energy and high chemical and optoelectrical stability. This work studies the interplay between charge-carrier separation and collection, and their injection into the electrolyte, when modifying the semiconductor/electrolyte interface. By introducing an n-doped nanocrystaline silicon oxide layer into a p-doped/intrinsic a-SiC:H photocathode, the photovoltage and photocurrent of the device can be significantly improved, reaching values higher than 0.8 V. This results from enhancing the internal electric field of the photocathode, reducing the Shockley-Read-Hall recombination at the crucial interfaces because of better charge-carrier separation. In addition, the charge-carrier injection into the electrolyte is enhanced by introducing a TiO2 protective layer owing to better band alignment at the interface. Finally, the photocurrent was further enhanced by tuning the absorber layer thickness, arriving at a thickness of 150 nm, after which the current saturates to 10 mA cm-2 at 0 V vs. the reversible hydrogen electrode in a 0.2 m aqueous potassium hydrogen phthalate (KPH) electrolyte at pH 4. 
IRIS
• Dibutyl Phthalate (DBP)
     Database Searches
          LitSearch July 2017 - Sept 2018
               New from Previous
               Pubmed