Health & Environmental Research Online (HERO)


Print Feedback Export to File
5080566 
Journal Article 
Effects of soil organic carbon (SOC) content and accessibility in subsoils on the sorption processes of the model pollutants nonylphenol (4-n-NP) and perfluorooctanoic acid (PFOA) 
Martz, M; Heil, J; Marschner, B; Stumpe, B 
2019 
Science of the Total Environment
ISSN: 0048-9697
EISSN: 1879-1026 
672 
162-173 
English 
Subsoils control the release of hydrophobic pollutants to groundwater systems, but the role of subsoil soil organic carbon (SOC) in sorption processes of hydrophobic organic pollutants remains unclear. Thus, this study aimed to understand the role of subsoil SOC in sorption processes of 4-n-nonylphenol (NP) and perfluorooctanoic acid (PFOA) as model pollutants. To characterize the sorption behavior of NP and PFOA, 42 sub- and 54 topsoil samples were used for batch experiments. Differences in NP and PFOA sorption between sub- and topsoil samples and its mechanisms were identified using multiple regression analysis. Generally, the sorption of NP and PFOA was linear in all samples. The sorption of NP to soil samples (logKD = 1.78-3.68) was significantly higher and less variable than that of PFOA (logKD = -0.97-1.44). In topsoils, SOC content had the highest influence on NP and PFOA sorption. For NP, hydrophobic interactions between NP and SOC were identified as the most important sorption mechanism. For PFOA, hydrophobic as well as electrostatic interactions were determined depending on soil pH. In subsoils, the relevance of SOC content for pollutant sorption decreased drastically. For NP, not SOC content but rather SOC quality was relevant in SOC poor subsoils. For PFOA, clay and iron oxide content were found to be relevant for pollutant interactions with the solid phase. Thus, especially in SOC depleted subsoils, the sorption potential for PFOA remained unpredictable.