Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5090200
Reference Type
Journal Article
Title
Unexpected Favorable Role of Ca2+ in Phosphate Removal by Using Nanosized Ferric Oxides Confined in Porous Polystyrene Beads
Author(s)
Zhang, Y; She, X; Gao, X; Shan, C; Pan, B
Year
2019
Is Peer Reviewed?
1
Journal
Environmental Science & Technology
ISSN:
0013-936X
EISSN:
1520-5851
Volume
53
Issue
1
Page Numbers
365-372
Language
English
PMID
30481471
DOI
10.1021/acs.est.8b05177
Web of Science Id
WOS:000455076600039
Abstract
Polystyrene-based nanoferric oxide composite is a representative nanomaterial successfully applied in scale-up water decontamination for arsenic and phosphorus. However, little is available on the effect of solution chemistry (for instance, the coexisting Ca2+) on the long-term performance of the nanocomposite. In this study, we carried out 20 cyclic runs of phosphate adsorption-desorption on a polymer-supported ferric nanocomposite HFO@201. Unexpectedly, an enhanced phosphate removal was observed in the presence of Ca2+, which is quite different from its adverse effect on phosphate capture by granular ferric oxide. Further mechanistic studies revealed that enhanced phosphate removal was mainly realized via the Ca-P coprecipitation inside the networking pores of HFO@201 as well as the possible formation of the multiple Fe-P-Ca-P complex. The complex formation led to a distinct increase in P adsorption, and the coprecipitation, driven by the accumulated OH- in confined pores during phosphate adsorption and alkaline regeneration, favored P removal via the formation of amorphous calcium phosphate (ACP) and hydroxyapatite inside. TEM-EDS spectra indicated that coprecipitation did not occur on the surface of loaded nano-HFO, greatly mitigating its adverse effect on P adsorption on the surface of nano-HFO. Fixed-bed column study showed that the presence of Ca2+ increased the effective treatable volume of HFO@201 toward P-containing influents by ∼70%. This study is believed to shed new insights into the effect of solution chemistry on similar nanocomposites for advanced water treatment.
Tags
IRIS
•
Inorganic Arsenic (7440-38-2) [Final 2025]
Lit Search Updates Jan 2019 to April 2021 (OPP)
New to this search
PubMed
Lit Search Updates Jan 2019 to August 2022
PubMed
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity