Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5916558
Reference Type
Journal Article
Title
Kinetic mechanism of lecithin retinol acyl transferase
Author(s)
Shi, YQ; Hubacek, I; Rando, RR
Year
1993
Is Peer Reviewed?
Yes
Journal
Biochemistry
ISSN:
0006-2960
EISSN:
1520-4995
Volume
32
Issue
5
Page Numbers
1257-1263
Language
English
PMID
8448136
DOI
10.1021/bi00056a009
Abstract
Lecithin retinol acyl transferase transfers acyl groups regiospecifically from the 1-position of lecithins to all-trans-retinol (vitamin A) and similar retinoids. LRAT is essential for the biosynthesis of 11-cis-retinal, the visual pigment chromophore, and is also required for the general dietary mobilization of vitamin A. The kinetic mechanism of this enzyme is described here, KM and Vmax values were determined for the substrates dipalmitoylphosphatidylcholine (DPPC) [1.38 microM and 0.17 microM/(min-mg), respectively] and for all-trans-retinol [0.243 microM and 0.199 microM/(min-mg), respectively]. In order to distinguish between a ping-pong bi-bi mechanism and a rapid equilibrium random or ordered bi-bi mechanism, the velocity of product formation as a function of one of the substrates at different fixed concentrations of the other substrate was measured. The parallel lines generated are entirely consistent with a ping-pong bi-bi mechanism in which DPPC first binds to LRAT and acylates it and rule out both simple random binding and ordered kinetic mechanisms. Further evidence for a ping-pong bi-bi mechanism comes from partial exchange reaction studies which show that LRAT can catalyze acyl group interchange between two different lecithin derivatives. Finally, the ping-pong reaction was established as being ordered, using the potent and reversible dead-end inhibitor 13-desmethyl-13,14-dihydro-all-trans-retinyl trifluoroacetate. This compound proved to be competitive with respect to DPPC, with a KI = 11.4 microM, and uncompetitive with respect to all-trans-retinol.
Tags
PFAS
•
Additional PFAS (formerly XAgency)
Literature Search November 2019
PubMed
Not prioritized for screening
Trifluoroacetate
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity