Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7206547
Reference Type
Journal Article
Title
Fibrin-VLDL Receptor-Dependent Pathway Promotes Leukocyte Transmigration by Inhibiting Src Kinase Fyn and is a Target for Fibrin β15-42 Peptide
Author(s)
Yakovlev, S; Cao, C; Galisteo, R; Zhang, L; Strickland, DK; Medved, L; ,
Year
2019
Is Peer Reviewed?
1
Journal
Thrombosis and Haemostasis
ISSN:
0340-6245
Language
English
PMID
31466086
DOI
10.1055/s-0039-1695008
Abstract
According to the current view, binding of fibrin degradation product E1 fragment to endothelial VE-cadherin promotes transendothelial migration of leukocytes and thereby inflammation, and fibrin-derived β15-42 peptide reduces leukocyte transmigration by competing with E1 for binding to VE-cadherin and, in addition, by signaling through Src kinase Fyn. However, the very low affinity of β15-42 to VE-cadherin raised a question about its ability to inhibit E1-VE-cadherin interaction. Further, our previous study revealed that fibrin promotes leukocyte transmigration through the very-low-density lipoprotein (VLDL) receptor (VLDLR)-dependent pathway and suggested a possible link between the inhibitory properties of β15-42 and this pathway. To test such a link and the proposed inhibitory mechanisms for β15-42, we performed in vitro experiments using surface plasmon resonance, enzyme-linked immunosorbent assay, and leukocyte transendothelial migration assay, and in vivo studies with wild-type and VLDLR-deficient mice using mouse model of peritonitis. The experiments revealed that β15-42 cannot inhibit E1-VE-cadherin interaction at the concentrations used in the previous in vivo studies leaving the proposed Fyn-dependent signaling mechanism as a viable explanation for the inhibitory effect of β15-42. While testing this mechanism, we confirmed that Fyn plays a critical role in controlling fibrin-induced transendothelial migration of leukocytes and found that signaling through the VLDLR-dependent pathway results in inhibition of Fyn, thereby increasing leukocyte transmigration. Furthermore, our in vivo experiments revealed that β15-42 inhibits this pathway, thereby preventing inhibition of Fyn and reducing leukocyte transmigration. Thus, this study clarifies the molecular mechanism underlying the VLDLR-dependent pathway of leukocyte transmigration and reveals that this pathway is a target for β15-42.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity