Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
9918029
Reference Type
Journal Article
Title
Thyronines and probucol inhibition of human capillary endothelial cell-induced low density lipoprotein oxidation
Author(s)
Hanna, AN; Titterington, LC; Lantry, LE; Stephens, RE; Newman, HA
Year
1995
Is Peer Reviewed?
Yes
Journal
Biochemical Pharmacology
ISSN:
0006-2952
EISSN:
1873-2968
Volume
50
Issue
10
Page Numbers
1627-1633
Language
English
PMID
7503765
DOI
10.1016/0006-2952(95)02047-0
Abstract
Oxidized lipoproteins have been implicated as important factors in the pathogenicity of atherosclerosis. Thus, antioxidants play a significant role in inhibiting a critical step in atheroma progression. Previously, we demonstrated that thyronine analogs inhibit Cu(2+)-induced low density lipoprotein (LDL) oxidation. In the present study, we examined the effect of thyronine analogs on endothelial cell (EC)-induced LDL oxidation. LDL was incubated with or without EC in the presence or absence of various concentrations of thyronine, vitamin C, or probucol at 37 degrees in a humidified atmosphere (95% air, 5% CO2). Thyronine analogs, probucol, and vitamin C inhibited EC-induced LDL oxidation in a concentration-dependent manner. The concentration of each agent (microM) producing 50% inhibition (IC50) of EC-induced LDL oxidation for thiobarbituric acid reactive substances (TBARS) and electrophoretic mobility, respectively, was as follows: 0.294 and 0.417 for levothyroxine (L-T4); 0.200 and 0.299 for L-triiodothyronine (L-T3); 0.125 and 0.264 for dextro-thyroxine (D-T4); 0.203 and 0.304 for reversed triiodothyronine (rT3); 1.02 and 1.44 for probucol; and 13.6 and 14.9 for vitamin C. Thyroid binding globulin (TBG) inhibited EC-induced LDL oxidation; further, thyronines bound to TBG exhibited more antioxidant activity than unbound thyronines. Pretreatment of EC with any of the thyronines decreased the ability of EC to oxidize LDL. Also, our results showed that a synergistic interaction exists between vitamin C and T4 in the inhibition of EC-induced LDL oxidation. The T4 and TBG concentrations that inhibited LDL oxidation were in the physiological range. We conclude that T4, like the pharmacological agent probucol, reduces oxidative modification of LDL and thus may act as a natural inhibitor of atherogenesis.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity