Supplemental Table S5-2 Identification of airway responsiveness data in papers

Study	Data Location and Type
Ahmed et al. (1983a)	Number of individuals having change in airway responsiveness from p. 10, conclusion 2
Ahmed et al. (1983b)	PD causing 35% decrease in sGaw following NO $_2$ and air from Table VII
<u>Avol et al. (1988)</u>	Number of individuals having a change in airway responsiveness from Table 1 of Folinsbee (1992)
<u>Avol et al. (1989)</u>	Number of individuals having a change in airway responsiveness from Table 1 of Folinsbee (1992)
Barck et al. (2002)	FEV_1 (% change) to allergen challenge following NO ₂ and air from Table 3
Bauer et al. (1986)	PD causing 10% decrease in FEV_1 following NO ₂ and air from Figure 3
<u>Bylin et al. (1985)</u>	PD_{100} following NO ₂ and air from Table 4; PD_{100} of 0.44 substituted for >0.44 and 64 for >64
Bylin et al. (1988)	PD_{100} following NO ₂ and air from Table 2
<u>Hazucha et al. (1983)</u>	Number of individuals having a change in airway responsiveness from text, p. 734, first full paragraph
Jenkins et al. (1999)	PD ₂₀ following air and NO ₂ from Table 5
Jörres and Magnussen (1990)	Provocative ventilation rate of SO ₂ following NO ₂ and air from Table 3
Jörres and Magnussen (1991)	PC100 following NO2 and air from Table 3
<u>Kleinman et al. (1983)</u>	Number of individuals having a change in airway responsiveness from p. 824, first paragraph
Mohsenin (1987)	PC of methacholine causing 40% reduction in peak expiratory flow from 60% vital capacity following NO ₂ and air from Figure 1
Morrow and Utell (1989a)	FEV ₁ (% change) for 0.25% carbachol challenge after NO ₂ and air from of Appendix H (PDF p. 10) of Morrow and Utell (1989b)
<u>Orehek et al. (1976)</u>	PD ₁₀₀ following 200 ppb NO ₂ and air from Figure 1. PD ₁₀₀ following 400 ppb NO ₂ from text p. 303, right column, first paragraph.
<u>Riedl et al. (2012)</u>	PC_{20} for methacholine following NO ₂ and air from Table 18. FEV ₁ (% change) to cat allergen challenge following NO ₂ and air from Table 27.
<u>Roger et al. (1990)</u>	Number of individuals having a change in airway responsiveness from Table 1 of Folinsbee (1992)
Rubinstein et al. (1990)	PC for SO ₂ causing 8 cm H ₂ 0 per L/s increase in sRaw above baseline following NO ₂ and air from Table 2
Strand et al. (1996)	PD ₁₀₀ at 30 min post-exposure for NO ₂ and air from Table 2
Strand et al. (1997)	PD ₁₀₀ for allergen following NO ₂ and air from Table 2. Histamine data also available but not extracted since this challenge followed the allergen challenge.
<u>Strand et al. (1998)</u>	Early phase FEV_1 (% change) for allergen challenge following Day 1 exposure to NO_2 and air from Table 3
Tunnicliffe et al. (1994)	FEV_1 (% change) for allergen challenge following NO ₂ and air from Table 3
Witten et al. (2005)	PD ₂₀ following NO ₂ and air from Table 2

Abbreviations: FEV₁, forced expiratory volume in 1 s; PC, provocative concentration; PC₂₀, provocative concentration causing 20% decrease in FEV₁; PD, provocative dose; PC₁₀₀, provocative concentration causing 100% increase in specific airway resistance; PD₂₀, provocative dose causing 20% decrease in FEV₁; PD₁₀₀, provocative dose causing 100% increase in specific airway resistance; NO₂, nitrogen dioxide; SO₂, sulfur dioxide; sGaw, specific airway conductance; sRaw, specific airway resistance.