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PREFACE

The Technical Support Document describes in detail the basis for the parameters and
equations that are used in the Integrated Exposure Uptake Biokinetic Model for Lead in
Children, version 0.99d. It is a supplement to the Guidance Manual that was published in
February, 1994, and is available from the Nationa.l Technical Information Service as document
PB93-963510. The IEUBK Model has been recommended as a risk assessment tool to support
the implementation of the July 14, 1994 Office of Solid Waste and Emergency Response Interim
Directive on Revised Soil Lead Guidance for CERCLA Sites and RCRA Facilities.

The development of the model has included the cooperative efforts of several EPA
programs over nearly a decade. For the last four years, the development and documentation of
the model have been coordinated by the Technical Review Workgroup for Lead, whose members
are listed on page vi. This document was written by the Workgroup with extensive support from
Dr. Steven W. Rust and Prithi Kumar of Battelle Columbus and Dr. Gary Diamond of Syracuse
Research Corporation. It reflects the comments of peer reviewers from within and outside of
EPA whose names and affiliations are listed on page vii.

Although this document details the selection of parameters and equations used in the
IEUBK Model, it is not a line by line documentation of the source code. Equations and
parameters presented in this document have been simplified for clarity. Comments on the
technical content of this document or suggestions for its improvement may be brought to the
attention of the Technical Review Workgroup for Lead.
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1.0 INTRODUCTION AND DOCUMENT OVERVIEW

The Integrated Exposure Uptake, and Biokinetic IEUBK) Model for Lead in Children is
a stand-alone PC-compatible software package consisting of several related computer programs.
The IEUBK Model combines estimates of lead intake from lead in air, water, soil, dust, diet, and
other ingested media, with an absorption model for the uptake of lead from the lung or
gastrointestinal tract, and a biokinetic model of lead distribution, and elimination from a child's
body, to predict the likely distribution of blood lead for children of ages six months through 84
months exposed to lead in these environmental media. Young children are particularty sensitive
to adverse health effects from low-level lead exposures. The usual biomarker of lead exposure
is the concentration of lead in the child's blood. Blood lead concentration is not only useful as
an indicator of recent lead exposure and historical lead exposure, but is also the most widely
used index of internal lead body burdens associated with potential adverse health effects. The
IEUBK Model can be used to predict the probability that children exposed to lead in
environmental media will have blood lead concentrations exceeding a health-based level of
concern. These risk estimates can be useful in assessing the possible consequences of alternative
lead exposure scenarios, including alternative models for intervention, abatement, or other
remedial actions.

Initial development of a computer simulation model containing uptake and biokinetic
components of a lead inodel was carried out by the U.S. Environmental Protection Agency,
Office of Air Quality Planning and Standards (OAQPS) in 1985. This model estimated the
effectiveness of alternative National Ambient Air Quality Standards for lead, particularly around
point sources of air lead emissions such as smelters. The biokinetic component of the model was
based on studies of lead metabolism in infant and juvenile baboons carried out at New York
University by N. Harley, T. Kneip, and P. Mallon in the early 1980'sv(MaIIon 1983; Harley and
Kneip 1985). In the late 1980's, the exposure component of the IEUBK lead model was
developed by the Environmental Criteria and Assessment Office at Research Triangle Park, NC -
(U.S. Environmental Protection Agency, 1989a; Cohen et al. 1990). The use of this early



version of the IEUBK lead model for setting air lead standards was documented in a staff report
in 1989, and a subsequent staff paper in 1990 was reviewed and found acceptable by EPA's
Clean Air Science Advisory Committee of the Science Advisory Board (U.S. Environmental
Protection Agency, 1990a).

The air model was further developed to include enhancements in exposure, absorption and
biokinetics. In November, 1991, the Indoor Air Quality and Total Human Exposure Committee
of EPA's Science Advisory Board evaluated the newer version of the model for its use in
assessing total lead exposures and in aiding the development of soil cleanup levels for lead at
residential CERCLA and RCRA sites. The Committee concluded that while refinements in the
detailed specification of the model would be needed, the approach followed in the development
of the model was sound and the model could be applied effectively for many current needs even
as it continued to be refined for additional applications based upon experience gained in its use.
The Committee identified the need for guidance in some areas, such as the use of default
parameters and the use of a geometric standard deviation to characterize inter-individual
variability.

Documentation for the early development stages of the IEUBK lead model exists within
two reports. Many of the initial model assumptions were documented in Appendix A of the
OAQPS staff paper on exposure assessment and methodology validation (U.S. Environmental
Protection Agency, 1989a). The 1990 Technical Support Document (U.S. Environmental
Protection Agency, 1990b) extended the documented basis for some of the model parameters.

Since 1991, development of the IEUBK lead model has been coordinated by the Technical
Review Workgroup (denoted TRW) for Lead whose members inglude scientists from EPA's
Office of Research and Development, the Office of Emergency and Remedial Response, the
Office of Pollution Prevention and Toxics, and from several EPA Regions. During this period,
enhancements have been made to nearly every aspect of the model. In particular, the model has
been implemented in a user-friendly software package (version 0.99d) that makes the model
accessible to the regulatory and scientific community. To assist the user in providing
appropriate input to the model, a Guidance Manual has been developed that describes the key
features of the IEUBK Model, its evolution and development, its capabilities, and its limitations.
The purpose of this report is to define the current stage of TEUBK lead model development,
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which was built on previous models. The result is a single report that documents all of the
parameters and equations employed in the IEUBK lead model, version 0.99d. Although this
document describes in detail the parameters and equations used in the IEUBK Model, it is not a
line by line documentation of the source code. Although most of the symbols and notation in
this report are identical to the source code, some notations may differ, but they are
mathematically equivalent.

A major portion of the documentation in this report is embedded in Appendices A and B.
Appendix A, the equation dictionary, provides three tables that list the equations used in the
TEUBK lead model. Exposure equations are listed in Table A-1. Table A-2 contains the
equations relevant to the uptake component, while Table A-3 displays the biokinetic equations.
Each of Tables A-1, A-2, and A-3 is structured as indicated in Table 1.

TABLE 1. INFORMATION PROVIDED IN TABLES A-1, A-2, AND A-3.

Column Hg Description
Equation Group Denotes a logical grouping of equations
Equation Number Identifier for the individual equation. The equation number consists of:
] Component identifier
- E for Exposure
- U for Uptake
- B for Bickinetic

Equation numeral - unique to each equation group
Lower case letter - uniquely identifies each equation
within an equation group. If there is only one equation
m a group, then this letter is omitted.

Equation Actual equation

Within each table, the equation group clusters similar equations or equations that combine to
achieve a common purpose. For instance, in Table A-1, the equation groups are defined by the
different environmentat media. The equation number provides a unigue identifier for each

equation.



Appendix B, the parameter dictionary, lists each parameter in the IEUBK lead model
alphabetically. As seen in Table 2, this appendix provides comprehensive information for each

parameter.
TABLE 2. INFORMATION PROVIDED IN TABLE B-1.
Column Heading Description
Parameter Name Unique name used to identify parameter. Time-dependent parameters are
followed by "(t)* and may have a different value for each iteration period.
Ctherwise the parameter takes on a single value.
Description Brief description of the parameter.

Default Values And/Or Defining Equation

- Value and/or Equation Number

- Age (months)

Lists the default value(s) for the parameter or the number of the equation
which defines the parameter.

Lists the age of the child for which the default value(s) or the equation are
applicable.

lorE

Indicates whether the parameter is an internal (I) or external (E)
parameter. 'T implies the user gangot change the value of the parameter,
while E' implies the user cap change the value of the parameter.

Basis for Values/Equations

Description of the basis for the default values the parameter assumes or
the equation which defines the parameter.

Units

Units of the parameter.

Parameter Use Equation

List of equation numbers in Appendix A for equations that employ the
parameter.

Section 2.0 provides a brief overview of the IEUBK lead model. In particular, the
exposure, uptake, and biokinetic components of the model are described separately and

interactions between the components are defined. Following this overview, the exposure,
uptake, and biokinetic components of the model are discussed in detail in Sections 3.0, 4.0, and

5.0, respecti-vely, describing the scientific basis for the equation structure and default parameter

values in the IEUBK lead model.




2.0 MODEL OVERVIEW

As indicated above, the IEUBK lead model relates lead concentrations in various
environmental media to the body burden of lead in children exposed to the environmental media.
Since a child's blood lead level is the most common biomarker of lead exposure employed in
practice, the ITEUBK lead model emphasizes blood lead ievel in its output. Thus in simple terms,
the IEUBK lead model translates environmental lead concentrations into predicted blood lead
levels in children of different ages. In order to accomplish this, the IEUBK lead model has four

distinct functional components that work together in series. The four mode} components are:

® Exposure Component

® Uptake Component

® Biokinetic Component

® Probability Distribution Component

Figures 1 and 2 illustrate the biological and mathematical structures, respectively, of the '
IEUBK lead model. The biological structure in Figure 1 places an emphasis on how lead can
move from the environment of a hypothetical child into the child's blood, while the mathematical
structure in Figure 2 emphasizes the parameters and calculations necessary to determine the
child's blood lead concentration. In both figures, the first three model components are clearly
delineated. |

As indicated in Figure 1, the exposure component relates environmentai lead
concentrations to the intake rate at which lead enters the child's body via the gastrointestinal (GI)
tract and lungs. The environmental media that act as lead sources for the child are air, which
enters the body through the lungs, and diet, dust, paint, soil, water, and other sources which enter
the body through the GI tract. As indicated in Figure 2, the exposure component converts
media-specific consumption rates (m*/day, g/day, or L/day) and media-specific lead
concentrations (ug Pb/m®, .g Pb/g, ug Pb/L), all of which are under the control of the user, to



media specific lead intake rates (xg Pb/day). The general equation relating the consumption
rates and lead concentrations to the lead intake rate is:

Lead Intake Rate = Media Lead Concentration « Media Intake Rate

In this manner, the exposure component models determines how much lead enters the child's
body and captures that information in a set of media-specific lead intake rates.

As indicated in Figure 1, the uptake component relates lead intake into the lungs or GI tract
to the uptake of lead from the exposed membrane into the child's blood, for children at each age.
Lead that enters through the lungs is either absorbed into the blood plasma through the lungs,
transferred to the gastrointestinal tract through the mucociliary escalator, or eliminated from the
body via exhaled air. Very small particles (especially those 0.5 microns in diameter and smaller)
may move directly into the blood plasma or may be eliminated from the body via exhaled air.
Approximately 30-50% of particulate airborne lead is deposited in the deep parts of the adult
lung, where it is almost totally absorbed. The rate may vary, depending on factors such as
particle size and inhalation rate. The deposition rate of small particles in the child's lung may be
2-3 times greater. The bulk of the lead in the body enters via the GI tract, either through
ingestion or by movement from the nose, throat or lung structures. Lead that enters the body via
the GI tract is either absorbed into the blood plasma or eliminated from the gut via the feces. As
indicated in Figure 2, the uptake component converts the media-specific lead intake rates
produced by the exposure component into media-specific lead uptake rates (n.g/day) for the
blood plasma. J |

The total lead uptake (ug/day) from the gastrointestinal tract is estimated as the sum of two
components, one passive {represented by a first order, linear relationship), the second active
(represented by a saturable, nonlinear relationship). These two terms are intended to represent
two different mechanisms of lead absorption, an approach that is in accord with limited available
data in humans and animals and also by analogy with what is known about calcium uptake from
the gut. First, the total lead "available" for gut uptake is defined as the sum, over all media, of
the medium intake rate times the estimated low dose fractional absorption for that medium. A
passive absorption coefficient defines the dose-independent fraction of the available lead that is |
absorbed by the passive absorption pathway, and allows calculation of the rate of absorption via

6
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that pathway. The rate of absorption of the remaining available lead by the active pathway is
calculated using a non-linear relationship that allows for saturable absorption.

As indicated in Figure 1, the biokinetic component models the transfer of absorbed lead
between blood and other body tissues, or elimination of lead from the body via urine, feces, skin,
hair, and nails. The basic model that underlies the biokinetic component is a compartmental
model whose pools have physiological properties, not just kinetic properties. The
compartmental structure of the IEUBK Model was developed by identifying the anatomical

comporents of the body critical to lead uptake, storage, and elimination, and the routes or
| pathways between these components. This compartmental scheme includes a central body
compartment, six peripheral body compartments, and three elimination pools. The blood pla;ma
is combined with the body's accessible extracellular fluid (ECF) to form the central plasma/ECF
body compartment. Separate body compartments are used to model the trabecular bone, cortical
bone, red blood cells, kidney, and liver. The cortical and trabecular bones can accumulate large
quantities of lead, at least sixty percent of the total body burden in children and over ninety
percent of body burden in adults with long exposure histories. Separate pools were used because
of differences in cortical and trabecular bone kinetics in adults. The kidney and liver are
important target sites of toxicity and some data are available from laboratory animal studies.
Most of the lead in blood is in the red blood cells, which is modelled as a peripheral
compartment exchanging with the plasma compartment. The remainder of the body tissues are
included in the "other soft tissues” peripheral body compartment. Three elimination pathways
are included in the biokinetic model: pathways from the central plasma/ECF compartment to the
urinary pool, from the compartment for other soft tissues to skin, hair, and nails, and from the
liver to the feces. The biological basis for this pathway is the excretion of bile by the liver into
the GI tract where it is subject to the absorption processes of the uptake component. As
indicated in Figure 2, the biokinetic component converts the total lead uptake rate produced by
the uptake component into an input to the blood plasma/ECF. Transfer coefficients are used to
model movement of lead between internal compartments and to the excretion pathway. These
quantities are then combined with the total lead uptake rate to determine lead masses in each of
the body compartments. The lead in the plasma portion of the central plasma/ECF compartment
is added to the lead in the red blood cells to determine the blood lead concentration (PbB).

9



The transfer coefficients used in the [EUBK Model are based on available data, including
tissue concentrations in autopsy samples from human children (Barry, 1981); parameter
estimates from experimental studies in primates comparable in age and developmental stage to
human infants; and theoretical principles of allometric scaling that are widely applicable in
biological models (Mordenti, 1986; Chappell and Mordenti, 1991).

The transfer coefficients in the IEUBK model are not directly related to blood flows, an
approach that is used in many physiological based pharmacokinetic models. Where data to
estimate transfer coefficients was sparse, the sensitivity of model predictions to changes in
parameter values was examined. The model output was sensitive to the values of excretory
parameters, for which data in human children was very limited. Final values of these parameters
were selected with reference to comparison of model predictions to data from a community lead
study where both blood lead and environmental lead levels were measured.

The iterative nature of the calculations in the biokinetic component is .illustrated in Figure
3. The period of exposure, zero to 84 months, is divided into a number of equal time steps that
are set by the user within the range 15 minutes to one month long. During each iteration,
compartmental iead masses at the beginning of a time step are combined with the total lead
uptake, inter-compartmental transfers, and quantities of excretion during the time step to
estimate compartmental lead masses at the end of the time step. The compartmental lead transfer
times during the time step are key parameters in these calculations. The compartmental lead
masses at the end of the time step then become the compartmental lead masses at the beginning
of the next time step and the iterative process continues. As indicated in Figure 2, the iterative
process is initiated by determining the compartmental lead masses at birth from the maternal
blood lead concentration and data on the relative concentrations of lead in different tissues of
stillborn fetuses. The model calculates all of the compartmental contents from O to 84 months;
it reports blood lead concentrations from 6 to 84 months.

The probability distribution component of the model estimates a plausible distribution of
blood lead concentrations centered on the geometric mean blood lead concentration for a
hypothetical child or population of children. This distribution can be displayed graphically, or
data can be loaded into a package for statistical analysis.

10
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3.0 EXPOSURE COMPONENT

The exposure component of the IEUBK model converts media-specific consumption rates
and media-specific lead concentrations, both of which are under the control of the user, to media-
specific lead intake rates. The equations that govern these model calculations are listed in Table
A-1 of Appendix A. In these equations, the lead intake rates for air, diet, household dust,
alternate source dust, soil, water, and other ingested media are denoted by EXAIR(t),
INDIET(t), INDUST(t), INDUSTA(t), INSOIL(t), INWATER(t), and INOTHER(Y),
respectively. The notation "(t)" following each variable name indicates that these lead intake rates

change with the age, t, of the child. All lead intake rates are in units of ug Pb/day. Once
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calculated, the media-specific lead intake rates serve as input to the uptake component. In the
sections below, the calculations required to determine the lead intake rates are discussed by
media. All referenced equation numbers can be found in the second column of Table A-1 of
Appendix A.

Note that the IEUBX lead model does not include exposure from direct ingestion of paint
chips because this exposure could not be adequately quantified, as discussed in Chapter 4 of the
Guidance Manual (U.S. Environmental Protection Agency, 1994). An indirect exposure
pathway in which lead-based paint contributes to dust lead exposure is included in the alternative
dust model discussed in Section 3.1.5. The IEUBK Model does allow users to insert their own
estimates of the daily intake rate of lead paint chips into the input parameter, INOTHER(t),
which is independent of all other inputs.

3.1 Exposure Equations
3.1.1 Air Lead Exposure Model

The air lead exposure model considers both indoor and outdoor air lead exposure for
determining the child's overall air lead exposure. The outdoor air lead concentration
(air concentration(t)) is specified by the user. The indoor air lead concentration (IndoorConc(t))
is determined according to Equation E-1 as a user-specified, constant percentage (indoorpercent)
of the outdoor air lead concentration. A time-weighted average air lead concentration (TWA(t))
is determined according to Equation E-2 where the indoor and outdoor air lead concentrations
are weighted by the user-specified, age-dependent number of hours per day that a child spends
outdoors (time out(t)). Finally, EXAIR(t) is calculated according to Equation E-3 as the product
of the time-weighted air lead concentration and a user-specified, age-dependent ventilation rate
(vent rate(t)).

3.1.2 Dietary Lead Exposure Model

Dietary lead exposure is determined by one of two methods: (1) direct specification, or (2)
alternative diet model. Under direct specification, as indicated in Equation E-4a, INDIET(t) is
set equal to the a user-specified, age-dependent lead intake rate for diet (diet intake(t)).

12



Under the alternative diet model, as indicated in Equation E-4b, INDIET(t) is calculated as
the summation of the lead intake rates for meat, vegetables, fruit and other sources. The first
three categories are sub-divided as follows.

o Meat
- non-game animal (InMeat(t))
- game animal (InGame(t))
- fish (InFish(t))

L Vegetables
- canned (InCanVeg(t))

- fresh (InFrVeg(t))
- home-grown (InHomeVeg(t))

- canned (InCanFruit(t))
- fresh (InFrFruit(t))
- home-grown (InHomeFruit(t))

These are combined in Equation E-4b. The other dietary sources included in InOtherDiet(t) are

dairy food, juice, nuts, beverages, pasta, bread, sauce, candy, and infant food and infant formula.
The terms on the right—hand side of Equation E-4b are defined in Equations E-5a through

E-5i, with the exception of InOtherDiet(t)!, which can assume only default values. In these

equations:

® The model allows the user to vary local dietary factors that may influence
overall lead exposure.

L Specifically, the user may vary lead intake from home grown vegetables,
fruits, game animals and fish.

® The user specifies the fraction of total food category consumption
represented by the sources; the total quantity of food consumption from -

For the sake of simplification, the term InOtherDiet(t) is used in the text to represent components of the
diet other then meat, fruit, vegetables, fish, or game. These other dietary components are modelled as InDairy,
InJuice, InNuts, InBread, InPasta, InBeverage, InCandy, InSauce, InFormuls, and InInfant and are not user-
selectable. :
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each category (meat, vegetables, fruit) is held constant.

The approach outlined here allows the user to input the lead content of locally produced
foods, while still maintaining default assumptions about overall intake of lead from marketed
foods. When greater flexibility is needed than is afforded by this method, the user should
develop appropriate estimates for total dietary lead intake.

In Equations E-5a, through E-Se, the traditional supermarket portion of the dietary lead
intake rate is calculated as the sum of the products of each consumption fraction and the specific
- lead intake for that category of food. The consumption fraction is calculated as a complement of
the user defined nonsupermarket fraction (1-user defined nonsupermarket fraction). In
Equations E-5f through E-5i, the lead intake rate is calculated as the product of the user-defined

nonsupermarket consumption fraction, and a consumption rate for that category of food.

3.1.3 Water Lead Exposure Model

Water lead exposure is determined by one of two methods: (1) direct specification, or (2)
an alternative water lead concentration model. Under direct specification, as indicated in
Equation E-6a, INWATER() is calculated as the product of a user-specified, age-dependent
water consumption rate (water consumption(t)) and a user-specified, constant water lead
concentration (constant water conc).

Under the alternative water model, as indicated in Equation E-6b, INWATER(}) is
calculated as the product of the same user-specified, age-dependent water consumption rate
(water consumption(t)) and a constant water lead concentration that is calculated as a weighted
average of user-specified, constant water lead concentrations from the first-draw on a home
faucet (FirstDrawCongc), a flushed faucet at home (HomeFlushedConc), and a water fountain
outside the home (FountainConc). These concentrations are weighted by user-specified,
constant fractions of consumed water that are first-draw water (FirstDrawFraction), home
flushed water (HomeFlushFraction), and fountain water (FountainFraction). As indicated in
Equation E-7, HomeFlushedFraction is célculated by subtracting the other two fractions from

one.
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3.1.4 Soil Lead Exposure Model ‘

As indicated in Equation E-8, INSOIL(t) is calculated using the user-specified soil lead
concentration (constant soil conc(t)), the user-accessible age-dependent soil and dust ingestion
rate (soil ingest(t)), and a user-accessible constant fraction of soil and dust ingested that is soil
(0.01 x weight soil). Soil lead concentration can be specified in an age-dependent manner; the

corresponding equations are not shown.

3.1.5 Dust Lead Exposure Model

Dust lead exposure is determined by one of two methods: (1) direct specification, or (2) an
alternative dust model. Under direct specification, as indicated in Equation E-9a and E-9b, the
baseline dust lead intake, INDUST(t), is calculated as the product of an age-dependent soil and
dust ingestion rate (soil ingested(t)), the fraction of soil and dust ingestion that is in the form of
dust (1 - 0.01 x weight soil), and a user-specified dust concentration (constant dust conc).
Age-dependent dust lead concentrations (user dust conc{t)) can be specified but are not shown
here. (When using the direct specification, the alternative source dust lead intake (INDUSTA(t),
is set to zero).

The alternative dust sources model, as indicated in Equations E-9¢ and E-9d, has two
alternative specifications:

¢ The indoor dust lead concentration is calculated as a sum of contributions
from soil and air, either constant or age-dependent {not shown).

-OR-

] The indoor dust lead concentration is calculated as the sum of
contributions from several additional sources, plus the household
contribution estimated by one of the three approaches above. Only a
fraction of dust lead exposure is assumed to come from residential dust.
When data are available, the remainder is assumed to come from
separately estimated dust sources including:

- Secondary exposure to leaded dust carried home from workplace
(OCCUP(t)

- Leaded dust at school or pre-school (SCHOOL(t))
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- Leaded dust at other non-school daycare facilities (DAYCARE(Y))

- Leaded dust from secondary homes (e.g. grandparents)
(SECHOME(t))

- Leaded dust from deteriorating interior paint (PAINT(t))

As indicated in Equation E-9¢, INDUST(t) is the product of the age-dependent dust
ingestion rate (DustTotal(t)), an age-dependent indoor dust lead concentration (soil indoor(t)),
and the fraction of dust exposure that is from residential dust (HouseFraction). As indicated in
Equation E-11, soil indoor(t) is calculated as a sum of contributions from soil and air. The
contribution from soil is the product of a user-specified, constant ratio of dust to soil lead
concentrations (0.01 x contrib percent) and the user-specified, age-dependent soil lead
concentration (user soil(t)).‘ Similarly, the contribution from air is the product of a user-
specified, constant ratio of dust to air lead concentrations (multiply factor) and the user-
specified, (age-dependent) outdoor air concentration (air concentration(t)).

As indicated in Equation E-9.5, HouseFraction is determined by subtracting from one, the
total of the user-specified, constant fractions of dust ingested that come from the parent's
occupation (OccupFraction), school (SchoolFraction), daycare (DaycareFraction), secondary
homes (SecHomeFraction), and paint (PaintFraction). The sum of all source fractions entered
cannot exceed 1.0, As indicated in Equation E-9d, INDUSTAC®) is the sum of the lead intake
rates from all five alternative sources where these individual lead intake rates are defined in
Equations E-12a through E-12¢. In these equations, the lead intake rate is the product of the age-
dependent, dust ingestion rate (DustTotal(t)), the user-specified, constant fraction of dust
ingested that comes from that source (OccupFraction, SchoolFraction, DaycareFraction,
SecHomeFraction, or PaintFraction), and the user-specified, constant dust lead concentration for

dust from that source (OccupConc, SchoolConc, DaycareConc, SecHomeCong, or PaintConc).
3.2 Default Values for Exposure Parameters
For diet, water and dust exposure, the user may choose from two or more methods of

calculating exposure. Each of these exposure pathways has both concentration and intake

16



parameter default values built into the model that can be used to calculate default exposure
levels. Using the direct default specifications for lead exposure from diet, water, and dust, the
resulting total lead intake rate for each age interval are: 23.40 (0-11 mo), 34.89 (12-23 mo),
35.76 {24-35 mo), 35.57 (36-47 mo), 28.42 (48-59 mo), 26.95 60-71 mo), and 26.65 (72-84 mo)
ug Pb/day.? These are the total lead intake rates and are the summation of individual default
rates for air, diet, water, soil, and dust. The following sections detail default values for selected
calculated parameters associated each of these individual media. Default media concentration
values, particularly those for soil and dust, are included for purposes of illustration of model

behavior; assessment specific concentration data will be required for model applications.

3.2.1 Air Lead Parameter Values .
The default values for indoorpercent, air concentration(t), time out(t), and vent rate(t)
result in the following default values for calculated parameters: =
® Indoor air concentration (IndoorConc(t)) of 0.03 ug/m> for 0-84 months;
° Time weighted average air concentration (TWA(t) of 0.033, 0.036, 0.039,
0.042, 0.042, 0.042, and 0.042 ug/m’ for the seven age intervals,
respectively,
L] Lead intake rates from air (EXAIR(t)) 0of 0.07, 0.11, 0.19, 0.21, 0.21, 0.29,
and 0.29 ug/day for the seven age intervals, respectively.

3.2.2 Dietary Lead Parameter Values

Under the default model specification, the lead intake rate from diet (INDIET(t)) assumes
default values of 5.53, 5.78, 6.49, 6.24, 6.01, 6.34, and 7.00 xg/day for the seven age intervals
(0-11, 12-23, 24-25, 36-47, 48-59, 60-71, and 72-84 months), respectively. Under the alternative
diet specification, the model assumes no consumption of game animal meat, fish, home-grown

vegetables, or home-grown fruit unless input by the user. Using default values for lead intake

Here and elsewhere it should be noted that the model calculates the uptake and biokinetic distribution of lead for each
iteration interval from O to 84 months. The model reports blood lead concentrations beginning with menth six and accepts user
selectable options for lead exposure for 6 months to 84 months. For the period 0 to 5 months, the mode! does not permit user
sclectable changes in exposure.
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from non-game animal meat, canned and fresh vegetables, canned and fresh fruit, and other
~ dietary sources, the lead intake rate from diet (INDIET(t)) assumes default values of 5.88, 5.92,
6.79, 6.57, 6.36, 6.75, and 7.48 ug/day for the seven age intervals, respectively.

3.2.3 Water Lead Parameter Values

Under the direct specification model, default values for water consumption(t) and
constant water conc result in the lead intake rate from water (INWATER(t)) assuming default
values of 0.80, 2.00, 2.08, 2.12, 2.20, 2.32, and 2.36 ug/day fot 0-11, 12-23, 24-25, 36-47, 48-59,
60-71, and 72-84 months, respectively. Under the alternative water model, default values for
FirstDrawConc, HomeFlushedConc, FountainConc, FirstDrawFraction , and FountainFraction
result in a composite water lead concentration of 3.85 1.g/L, which in turn with defauit values of
water consumption(t) results in the lead intake rate from water INWATER(t)) assuming default
values of 0.77, 1.92, 2.00, 2.04, 2.12, 2.23, and 2.27 ng/day for the seven age intervals.

3.2.4 Soil Lead Parameter Values

Soil lead does not include the fraction of housedust that is derived from soil. This allows
the estimation of soil lead concentration directly from soil measurements. Default values for
constant soil conc(t), soil ingest(t), and weight soil result in the following default values for
calculated intakes:

L Soil (excluding house dust) ingestion rates of 38.25, 60.75, 60.75, 60.75,
45.00, 40.50, and 38.25 mg/day for the seven age intervals (6-11, 12-23,
24-25, 36-47, 48-59, 60-71, and 72-84 months), respectively;

L Lead intake rates from soil (INSOIL(t)) of 7.65, 12.15, 12.15, 12.135, 9.00,
8.10, and 7.65 ug/day for the seven age intervals.

3.2.5 Dust Lead Parameter Values
Under the default model specification, values for soil ingest(t), percent soil, and
user dust conc(t) result in the following default values for calculated parameters:
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House dust ingestion rates (DustTotal(t)) of 46.75, 74.25, 74.25, 74.25,
55.00, 49.5, 46.75 mg/day for (6-11, 12-23, 24-25, 36-47, 48-59, 60-71,
and 72-84 months), respectively;

Lead intake rates from household dust (INDUST(t)) of 9.35, 14.85, 14.85,
14.85, 11.00, 9.90, and 9.35 ug/day for the seven age intervals;

Lead intake rate from alternative source dust (INDUSTA(t)) of zero
ng/day.

Under the alternative dust model, defauit values for soil ingest(t), weight soil,

contrib percent, user soil(t), multiply factor, out air concentration(t), OccupFraction,

SchoolFraction, DaycareFraction, SecHomeFraction, and PaintFraction result in the following
default values for calculated parameters:

House dust ingestion rates (dust ingested(t)) of 46.75, 74.25, 74.25,
74.25, 55.00, 49.5, 46.75 mg/day for the seven age intervals, respectively;
these rates are the same as for the default model specification discussed
above;

Indoor dust lead concentration (soil indoor(t)) of 150 wg/g for all ages;

Lead intake rates from househoid dust INDUST(t)) of 8.42, 13.37, 13.37,
13.37, 9.90, 8.91, and 8.42 ug/day;

Since the fraction of dust ingested that comes from each alternative dust
source has a default value of zero, the lead intake rate from alternative
dust sources (INDUSTA(t)) assumes a default value of zero ug/day.
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4.0 UPTAKE COMPONENT

4.1 Overview

The uptake component models the manner in which lead intake (lead that has entered the
child's body through ingestion or inhalation) is either transferred to the child's blood plasma or
eliminated from the body. Uptake is the quantity of lead absorbed per unit time from portals of
entry (gut, lung) into the systemic circulation of blood; that is, a rate at which lead from all
media is taken up into the blood. Since most lead is taken into a child's body through the
gastrointestinal (G.1.) tract, we will usually be discussing gut uptake. Only a fraction of the gut
intake is actually absorbed into systemic circulation during any period of time. That is, the gut
uptake rate in ug Pb/day is a fraction of the gut intake rate in ug Pb/day. This fraction is known
as the absorption fraction and usually provides the most convenient parameterization of the
uptake process.

In the IEUBK model, all lead uptake from the gut is treated as the sum of saturable and
non-saturable components. This approach has been developed to address findings in studies in
humans and experimental animals as well as our current (limited) understanding of the
mechanisms of lead absorption in the gut. Human data suggest a curvilinear relationship
between lead intake and lead absorption (Sherlock and Quinn, 1986; Ryu et al., 1983). Studies
in non-human primates also suggest a nonlinear relationship between blood lead and lead intake
(Mallon, 1981 and 1983). Additionally, in vivo experiments using the rat as a model show a
concentration dependence between lead intake and blood lead (Freeman et al., 1992). We have
interpreted the nonlinear relationship as representing lead absorption by at least two mechanisms
(discussed below), based on the biological plausibility of the assumption of nonlinear absorption
from other experimental studies (Aungst and Fung, 1981).

The physiological mechanisms that account for these observations of curvilinearity are not
completely established. The absorption nonlinearity, assumed in the [EUBK Model at higher
intake rates, is a plausible explanation for the nonlinear relationship observed between lead
intake and blood lead. The nonlinear relationship can be observed when the GI component of
lead intake exceeds 200 ug Pb/day for enough cases that the part of the relationship with lower
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absorption (usually blood lead above 25 or 30 pg/dL) can be clearly separated from the part of
the relationship with higher absorption at gut lead intake less than about 100 to 200 ug Pb/day.
However, it shouid be noted that there are other nonlinear biokinetic factors that can inﬂuenée
the observed relationship between lead intake and blood lead. In particular, the binding of lead
in red blood cells shows saturable behavior. The IEUBK model also incorporates a nonlinear
relationship for the binding of lead in blood. However, available data are not yet sufficient to
empirically resolve the contributions that these two nonlinear effects make to the observed
relationship between lead intake and blood lead. The mathematical approach employed here is
intended to allow plausible modeling of absorption phenomenon while important biochemical
and biophysical research into the exact mechanisms of lead absorption proceeds.

Experimental studies of soil lead absorption using appropriate animal models and feeding
patterns analogous to those of human children are being carried out by EPA. Preliminary resuits
(Weis et al., 1994) are consistent with the assumptions used in the IEUBK Model, but require
more complete analyses. The current parameters of the model are based on statistical analyses of
some experimentally measurable quantities in these studies and in older studies in human
children (Sherlock and Quinn, 1986).

In extending these results to a mixed multi-media gut intake scenario, we have assumed
that linear absorption at low intake rates is the best characterization for the available lead. When
doses are relatively low, human or experimental animal data may be applied to estimate the
fractional absorption of lead. A fractional absorption estimate implicitly combines the elements
of dissolution of solid particles such as particle size, chemical speciation, matrix embedding, and
stomach pH at different times after meals, for which we have no comprehensive quantitative
model at this time. While the characterization of gut uptake by a fractional absorption value is
conceptually straightforward, it may not adequately characterize the complexity of the
absorption processes. Absorption occurs in different segments of the gut, and lead
concentrations in these segments will depend on acidity, binding of lead to total gut contents,
including minerals and fibers, and other factors. We would not expect to have knowledge of all

of these factors in any real-world childhood lead exposure scenario.
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4.2 Parameterization of the Saturable and Non-Saturable Components of

Absorption

The intake rates are calculated in the exposure component of the IEUBK Model, using the
E-series equations in Table A-1, and are denoted EXAIR(t) for air lead, INDIET(t) for dietary
iead, INDUST(t) for dust lead®, INSOIL(t) for soil lead, INWATER(t) for lead in drinking water,
and INOTHER(t)* for all other sources of ingested lead. Uptake rates are media-dependent and
age-dependent. The media specific uptake rates are designated UPAIR(t) for air lead,
UPDIET(t) for dietary lead, UPDUST(t) for dust lead, UPSOILAY) for soil lead, UPWATER(t)
for lead in drinking water, and UPOTHER(t) for all other sources of ingested lead. The IEUBK
Model is parameterized such that, at typical blood lead levels of concern, media-specific
absorption fractions are constant. The net absorption fractions used to characterize the IEUBK
Model are denoted ABSF for dietary lead absorption, ABSD for dust lead absorption, ABSS for
soil lead absorption, ABSW for drinking water lead absorption, and ABSO for absorption of lead
from other intake sources. These parameters are accessible to the user. In the absence of
saturation effects, total lead absorption is equal to the sum of media specific absorption values
where absorption from each media is equal to the intake rate multiplied by the absorption
fraction for that media. This quantity is denoted AVINTAKE.

AVINTAKE = ABSD x INDUST()
+ ABSF x INDIET(t)
+ ABSO x INOTHER(f)
+ ABSS x INSOLL(t)
+ABSW x INWATER()

As noted above, to more accurately model lead uptake at higher intake rates, the absorption
fractions must be modified so as to separate their non-saturable and saturable components. At

3 If the alternative dust intake options are used, then the alternative dust lead intake is denoted INDUST A(t) and the
uptake UPDUSTA(Y), and these replace the standard INDUST(t) and UPDUST(t) values.

*  The contributors to INOTHER may include, for sxample, paint chips or medicines, however, the mode! user must
determine appropriate intske rates.
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doses where saturation of absorption is important, the actual uptake of lead will be less than
AVINTAKE(t). Lead uptake by the passive pathway is assumed to be linearly proportional to
intake at all dose levels. The user parameter PAF is the fraction of the total net absorption at low
intake rates that is attributable to non-saturable processes. Specifically, the lead uptake by the
passive pathway is equal to

PAF x AVINTAKE().

We have assumed that the fraction of absorbed lead intake that is absorbed by non-saturable
processes is the same for all media.
At low doses, the quantity of lead absorbed by the gaturable pathway is:

(1-PAF) x AVINTAKE(®).

However, at higher doses, only a certain fraction of this amount will be absorbed. The equation
for a rectangular hyperbola (familiar from biochemistry as the functional form applied with
Michaelis Menton enzyme kinetics) is used to represent saturable pathway absorption. The key
parameter in this relationsﬁip is SATINTAKE(t), which represents the level of available intake
(AVINTAKE) at which the saturable pathway uptake reaches half of its maximum value. This
half-saturation parameter depends on the age t of the children. The user has access to the value
of SATINTAKE(t) at age t = 24 months, denoted SATINTAKE?Z, through the gut absorption
parameter menu in the Model. From SATINTAKE?2, the model calculates SATINTAKE(t) for
all ages. ‘

The fraction of potential saturable pathway uptake that is actually absorbed is given by:

141 + [AVINTAKE(t)/SATINTAKE(®)].

Thus, the amount of lead that is absorbed by saturable processes is calculated as:
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(1-PAF) x AVINTAKE(t)/[1+ (AVINTAKE(t)/SATINTAKE(%)].*

Total lead uptake is given by the sum of the active and passive components of uptake.
Media specific uptake rates are calculated using the same proportionalities as total intake for

example, the non-saturable uptake component for soil is given by:
PAF x UPSOIL(t)
While the saturable uptake component for soil is:
(1-PAF) x UPSOIL(t)/[1+ (AVINTAKE(t)/SATINTAKE()].

Uptake rates for other media are calculated analogously, and the reader may verify that the sum
of media specific rates gives the values for total uptake shown above.

Figure 4 illustrates the functional relationships between intake of lead and the components
of lead uptake. The conceptual relationship between saturable and non-saturable pathways are
shown in Figure 5. The partitioning of gut lead uptake is shown in Table 3.

SNote that with a different choice of constant parameters, this term may be rearranged as
(2*AVINTAKE)/(b+AVINTAKE), a form that may be more familiar to many readers. :
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Figure 4: The mathematical treatment of lead absorption in the IEUBK model comprised

of saturable and non-saturable components [figure not to scale].

Table 3. PARTITIONING OF TOTAL GUT LEAD INTAKE BY PROCESS.

FATE PROCESS GUT INTAKE COMPONENT
Absorbed Non-saturable PAF x AVINTAKE(D)
Saturable absorbed (1-PAF) x AVINTAKE(tY
[1+AVINTAKE(t)/SATINTAKE(S)]
Excreted Non-available (1-ABSD) x INDUST() +

(1-ABSF) x INDIET() +
(1-ABSO) x INOTHER() +
(1-ABSS) x INSOIL(t) +

(1-ABSW) x INWATER()

Saturable non-absorbed | (1-PAF) x AVINTAKE()®
KAVINTAKE(t) + SATINTAKE(1))
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4.3 Other Uptake Pathways

The multi-media nature of a child's lead exposure requires a detailed examination of the
mechanisms of absorption of lead through the portals of entry: skin, lungs, and GI tract. While
dermal absorption may be a significant route of entry for organclead compounds, such as
tetraethyl lead used as an additive to leaded gasoline, it is not considered a significant pathway
for inorganic lead and is not included in the IEUBK model.

The lung absorption model employed in the IEUBK Model is discussed in detail in the
OAQPS Staff Paper (U.S. Environmental Protection Agency, (1989a). This model assumes that
a fixed proportion of the lead taken into the lungs via inhaled air is transferred to the child's
blood plasma. Much of the lead that enters the lungs is probably removed by the action of the
mucociliary escalator and ultimately finds its way into the GI tract. Very small particles
(especially those 0.5 microns in diameter and smaller) may move directly into the blood plasma
or may be eliminated from the body via exhaled air. Lead that becomes entrained on the
mucociliary escalator and is subsequently swallowed is not modelled separately from the
inhalation fraction.

5.0 BIOKINETIC COMPONENT

The biokinetic component of the IEUBK model calculates age-dependent lead masses in
each of the body compartments (plasma-extra-cellular fluid, liver, kidney, trabecular bone,
cortical bone, and other soft tissue) based on the total lead uptake rate (UPTAKE(t)). The
concentration of lead in blood is then calculated by dividing mass of lead in the blood plasma
and red blood cells by the volume of blood. The equations that govern the biokinetic model
calculations are listed in Table A-3 of Appendix A. In this table there are equations for
compartmental lead transfer times, blood to plasma-ECF lead mass ratio, tissue to blood lead
concentration ratios, fluid volumes and organ weights, compartmental lead masses, blood lead
concentration at birth, and blood lead concentration. A description of the biokinetic parameters
can be found in Table B-1. The notation (t) indicates that the parameter value is adjusted for the
child's age.
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The calculations in the biokinetic model begin by determining the volumes and weights of
specific compartments in a child's body, as a function of age. Next, the transfer times of lead
between the compartments and through elimination pathways are estimated. Initial
compartmental lead masses and an initial blood lead level are calculated for a newborn child.
Then successive values are calculated for the compartmental lead masses and blood lead
concentration of a child at each iteration time. These calculations are performed for a child from
birth to age 84 months.

In developing estimates of parameter values, primary emphasis was placed on applying
information from studies with human children. When data for children were not available, data
‘on human adults were sought, with consideration for appropriate allometric scaling. Data from
primate studies were also helpful in defining plausible ranges of parameter values for human
children. However, baboon and monkey data were not used as the primary basis for any
parameters in the IEUBK Model. Where there was considerable uncertainty in parameter values
(specifically for excretory parameters), model predictions for a range of plausible parameter
values were compared to data from epidemiological studies of blood lead in children from
communities with measured environmental lead levels. The results of these comparisons were
used in the selection of specified parameter values within the varied ranges. The following steps

were applied in estimation of specific parameter values:

1. Tissue/blood concentration ratios were established.

Tissue/blood concentrations were based primarily on autopsy samples from children
that were reported by Barry (1981). We assumed that near steady-state conditions
existed for most of these children corresponding to long periods of exposure to
environmental concentrations that were constant over time. For cortical bone/blood,
trabecular bone/blood, kidney/blood, liver/blood, and combined other soft
tissues/blood, tissue/blood concentrations were calculated using mean concentration

values, because individual data were not available.
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2. The compartmental concentration ratio estimates were converted into the ratio of masses of
lead using compartmental size (mass or volume). These ratios were then used to relate

transfer times to and from model compartments.

A fundamental requirement for the [IEUBK model is that a mass balance of lead be
maintained. When applied to the special case of near steady-state conditions, the
mass balance requirement implies that the ratio of the quantity of lead in a tissue to
the quantity of'lead in the central plasma-ECF compartment equals the ratio of the
transfer time from tissue to the central compartment to the transfer time from central

compartment to tissue.

Concentration ratio data do not, by themselves, allow separate estimates of transfer
times into and out from compartments. Kinetic data to allow separate estimates of the
transfer in and out from specific compartments are scarce. Therefore, for most
compartments, the estimated ratio of transfer times is more strongly founded than the
individual transfer rates, and the exercise of judgment was necessary in assigning
specific values for transfer times from blood to the peripheral compartments.
However, once the ratios of times were specified, the model predictions were found

to be quite insensitive to the specific values selected for these transfer times.

3. The relationship between blood and plasma was established, and the ratio of transfer times
from red blood cells to plasma and from plasma to red blood cells was estimated.

To estimate transfer times from red blood cells to plasma and from plasma to red
blood cells, adult data (deSilva, 1981a,b; Cavalieri et al., 1978a,b, 1981, 1984) were
applied, assuming that transfer times in adults and children are similar.

This assumption is consistent with general allometric considerations. However, there
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could be biochemical diﬁ'erence_s between adults and children that could affect the
partitioning of lead between blood and urine.

To maintain mass balance in near steady-state conditions, the ratio of the quantity of
lead in the tissue to the quantity of lead in the central plasma-ECF compartment
equals the ratio of transfer time from tissue to the central compartment to transfer
time from central compartment to tissue. This relationship was inverted by fixing the
ratio of masses to correspond to the tissue/blood concentration ratios of Barry (1981),
the ratio of blood/plasma, and the weight of the tissues and volume of the plasma-
ECF pool. Data did not allow separate estimates of transfer times into and out of
most compartments. Rather, only the ratio of transfer times could be determined
from data for most compartments.

4. After these parameters were fixed, the additional modifying terms or urinary, fecal, and soft
tissue elimination times were considered.

Because of the long time needed to achieve steady-state in bone, i.e., the long transfer
time from bone to blood, the blood to bone transfer time was also considered as an
adjusted parameter. Transfer coefficients for urinary excretion of lead by adults were
reviewed and used as a starting point for estimation of urinary excretion by children.

The ratio of endogenous fecal to urinary elimination was calculated based on statistical
reanalysis of data on children (Zeigler et al., 1978; Ryu et al., 1983), supported by information in
Alexander (1974). To determine reasonable bounds on parameters, data from adult studies
measuring relative amounts of lead eliminated by urinary, fecal, and other paths of excretion
were also examined (Rabinowitz et al., 1976). For each of the excretory terms (urinary, fecal,
other soft tissue elimination) as well as blood to bone transfer, (which, conceptually, may act
similarly to an excretory pathway in removing lead from blood), a grid of biclogically plausible
values was constructed and an iterative optimization procedure established for comparing model
predictions to a data set from a field study that collected both detailed environmental data and
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blood data. In this process, the model was run repeatedly in batch mode and the rate of observed
to predicted blood lead levels was examined. The bone parameters were adjusted first, followed
by the urinary elimination rate, the ratio of endogenous fecal to urinary elimination rates, and
then other soft tissue values. The elimination parameters were varied in this order because of the
greater certainty about the urinary rate and the virtual lack of information about other soft tissue
routes of elimination in children.

Using the results of these comparisons, values for the four parameters, within the varied
ranges, were established. with these parameter values, model predictions were consistent with
the geometric mean and blood lead distribution in the field study data. Test simulations were
also made with different hypothetical exposure scenarios and the bone to blood concentration
ratio from the simulation output was checked to insure that the values produced were concordant
with ratios based on data from Barry (1981).

Finally, model predictions were then compared with observed blood and environmental
lead data at a second field study. Further parameter adjustments were judged unnecessary.
Other specifications for the relative magnitudes of the three excretory pathways could produce
equivalent rates of total lead excretion and, thus, equivalent model blood lead predictions.

It is also important to note that the selected model parameters set excretory rates for the
three pathways to levels that are at the high end of values deemed plausible. If changes were
made for the intake or absorption values used in the analysis of the community lead data,
different values for the excretory parameters may have been supported. As the excretory
parameters have substantial impact on model predictions and, as very little data for human
children were available to directly support the selection of these values, generation of better
excretory data for human children is a priority for further research.

The sections that follow provide descriptions of the calculations involved in the biokinetic
model. Since this model requires many equations, the descriptions are brief and are meant as a
general overview of the calculations. All referenced equation numbers can be found in the
second column of Table A-3 in Appendix A.
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5.1 Basis for the Biokinetic Compartmental Structure

5.1.1 Postulates for the Compartmental Structure

The diﬁ'erential equations of the biokinetic model component are a consequence of the
compartmental structure assumed for the model. Compartments in the model are identified as
specific physiological or anatomical compartments with the exceptibn of a residual soft tissue
compartment designated as OTHER. The biokinetic components were chosen for several
reasons: the importance of some tissues as target sites of toxicity, such as liver or kidney; the
large potential iead burden of tissues , such as bone; the conventional definition of certain
compartments in many pharmacokinetic models; that availability of data describing the
concentrations of lead found in these tissues; and the need for a system that would require little
additional expansion for future applications. Those compartments that have not been
characterized are lumped together as other soft tissues. We chose to extend the compartmental
structure of the biokinetic model for several purposes, looking ahead to the need for a system
that would require these additional components in future applications. The most important
features and assumptions include:

) Blood is divided into plasma and red blood cell compartments;

2) The plasma compartment is extended to include the extracellular fluid that
exchanges rapidly with plasma, but is not accessible in usual blood sampling
methods, and may account responsible for the volume of distribution of blood
lead being about 1.7 times larger than the blood volume; The larger volume of

- distribution includes possible larger physical space as well as other factors such
as increases resulting from protein binding.

3) Lead from entry portals in lung aﬂd gut is taken up directly into the plasma-
extracellular fluid pool, not into the red blood cells;

(C)) The uptake of lead from the gut into the plasma-extraceliular fluid pool is rate-
limited by the lead concentration in the gut, but does not depend on the plasma
lead concentration, so that uptake is independent of the internal bickinetics;

(5) The transfer of lead from plasma to red blood cells is partially limited by the finite
capacity of the red cells to bind and retain lead, so that the whole blood lead
concentration is not directly proportional to the lead uptake rate, especially at
high levels of exposure;
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6) Transfer times among compartments may be scaled for children of different ages
by means of body weight according to an allometric scaling that approximates

whole body surface area,
@) Transfer between plasma and red cells shows little age dependence;
(8) The kidney should be used as a separate compartment because data on kidney

lead levels are available in both animal experiments and human autopsy data,
because it is an important target site of lead toxicity, and because predicted
kidney lead burdens may be of use in estimating the increased risk of
hypertension or other adverse renal effects of lead exposure;

9 The liver should be used as a separate compartment because data on liver lead
levels are available in both animal experiments and human autopsy data, and
because the liver is a possible target site of lead toxicity at elevated exposure
levels;

(10) Separate compartments for cortical and trabecular bone were included, although
transfer times for younger children are the same in these two compartments of the
model. In older children large lead burdens in these tissues might reflect
differences in transfer times and potential ease of mobilization of lead burdens in
these tissues.

(11) Other soft tissue target sites of toxicity may be needed for future uses of the
IEUBK model, such as the bone marrow for hematopoietic toxicity, or certain
brain or central nervous system sites for neurotoxicity, these sites are
biokinetically "small" but toxicologically significant.

S.1.2 Division of the Whole Blood Pool

It has been known for some time that red blood cells carry the majority of lead in blood.
Accordingly, a number of authors have inferred that it is necessary to subdivide the blood
compartment and model separately the toxicologically active fraction of the blood lead in the
| plasma. References in Marcus (1985a,b) include McRoberts (1973), Baloh et al. (1974),
Cavalleri et al. (1978a,b), deSilva (1981a,b), Everson and Patterson (1980), and Manton and
Malloy (1983). Other studies on plasma lead include Chamberlain et al. (1978), Campbell et al.
(1984), Cavalleri et al. (1981, 1984), Cavalleri and Minola (1987), Manton and Cook (1984),
O'Flaherty (1992), Ong et al. (1986), and Simons et al. (1991). An age-dependent model for lead
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and other metals, using plasma as the central pool, was presented by Cristy et al. (1986), and
expanded by Leggett (1993). The use of the whole blood lead concentrations rather than the
plasma lead concentrations is traditional, based on the relative ease of accurate blood lead
measurement and the relative difficulty measuring plasma lead.

The earliest version of the IEUBK Model used the approach of Harley and Kneip (1985),
who assert that "While it is probably the plasma which provides the exchangeable fraction for
the various organs, since cells and plasma remain in a constant ratio, the blood is treated as a
- single compartment since no benefit is obtained by using two compartments." However, in order
to better represent the biological system, the IEUBK Model now treats red blood cells as a
compartment separate from plasma. With the parameter values that are employed, the present
approach does imply that the plasma and red blood cell lead concentrations achieve near-
equilibrium level for most purposes.

The division of the whole blood pool into one or more plasma and erythrocyte pools in a
compartmental model is described by Cavalleri et al. (1981), Marcus (1985a,b), and O'Flaherty
(1992). The piasma pool probably consists of both a filterable or diffusible component, and a
non-diffusible protein-bound component. Ca?alleri et al. (1981) estimate about 4 ug Pb in the
plasma-diffusible compartment, about 45 pg Pb in the plasma protein-bound compartment, and
about 1850 pg Pb in the erythrocytes in the adult subjects in the Rabinowitz et al (1976) stable
isotope studies. We have chosen to combine the two plasma compartments, which are probably
in a very rapid kinetic quasi-equilibrium. Attempts to model the kinetics of the plasma and
extracellular fluid pools separately (Marcus 1985a,b) were not very successful. More
importantly, we are not aware of any significant kinetic non-linearities for lead transfer between
plasma compartments or plasma-ECF fractions that would affect the interpretation of blood lead
vs. lead uptake relationships.

There is a large amount of conflicting literature on the quantitative relationship between
plasma lead concentration and either the whole blood lead concentration or the red blood cell
lead concentration. Some authors report-that no predictive relationship is observed between
plasma lead concentration and blood lead concentration (Rosen et al. 1974) or a weak and
statistically non-significant relationship (Ong et al. 1986). However, most recent studies have
found that there is a statistically significant relationship, whether estimated from a linear
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statistical model (Cavalleri et al. 1978a; DeSilva 1981a,b) or a non-linear statistical model
(Manton and Cook 1984; Marcus 19853). The non-linear models provide a far better fit to the
data than do the linear models.

The ratio of plasma lead concentration to blood lead concentration is roughly constant at
low concentrations (below 40-60 ..g/dL) based on deSilva (1981a,b) as described and reanalyzed
in Marcus (1985¢). The ratio is variously estimated as 0.014 (deSilva, 1981a,b) or 0.028
(Cavalleri et al., 1978a) in adults, compared to an estimate of 0.06 (Ong and Lee, 1980 a,b).
Concentrations are converted to mass by multiplying by compartmental volume. More recent
assessments (Diamond and Q'Flaherty, 1992a,b) suggest a much lower value, in the range of 0.2
to 2 percent. However, it is likely that the regression slopes have been seriously attenuated by
the classic "error-in-variables" bias in least-squares regression models. This bias arises because
the blood lead concentration, which is the predictor variable, is measured with some analytical
uncertainty even if no systematic biases occur. It can be proven that the estimated regression
slope of plasma lead concentration vs blood lead concentration will be closer to 0 (on an
average) than the true value, and consequently the apparent value of the intercept will be higher
than the true value. We are not aware of any analyses in which the estimate has been adjusted
for measurement error bias. It is likely that the true value of the ratio of plasma lead
concentration to blood lead concentration is larger than 2 percent in these studies.

The IEUBK model includes a parameter that places an upper limit on red-cell lead binding
capacity. In vivo and in vitro studies of blood lead kinetics and partitioning show evidence of
saturable binding of lead to red blood cells at relatively high lead concentrations for adults. In
the parameterization of this model, a high upper limit on binding is set, consistent with aﬁailable
observations. Accordingly this phenomenon has little effect of predictions of children's blood
lead at normally anticipated levels of environmental exposure. However, as noted in the
discussion of lead uptake above, there are significant nonlinearities in the empirical relationship
between lead intake and observed blood lead. While this nonlinearity is currently attributed to

saturation of lead uptake from the gut, it is possible that nonlinear binding in red cells may also
play a role in explaining these observations.

It is known that lead is bound to two or more distinct fractions of the erythrocyte, as cited
in (Marcus 1985a): (Bruenger et al. 1973; Clarkson and Kench, 1958; Ong and Lee 1980c;
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Stover 1959). This is in part attributable to the presence of lead-binding proteins in different
parts of the erythrocyte (Raghavan and Gonick 1977; Raghavan et al. 1980, 1981; Gonick et al.
1981; Church et al. 1991). While limited lead-binding capacity in the erythrocyte is known Eom
in-vitro studies (Barton 1989), it appears to be far more dependent on lead concentration in-vivo.
The limited lead-binding capacity of the erythrocyte appears to be highly related to the toxicity
of lead (Raghavan and Gonick 1977, Marcus and Schwartz 1987, Mushak 1991; Church et al.
1991). Workers and children in which lead was largely bound to the erythrocytes showed less
frank toxicity and lower levels of biomarkers such as erythrocyte protoporphyrin.

An analysis by Marcus and Schwartz (1987) suggests that the blood lead concentrations at
which one could infer significant saturation of red-cell lead binding were relatively low in
children with iron deficiency (about 26 ug/dL), and higher (> 33 ug/dL) in iron-replete or iron-
abundant children. It is not clear whether differences in lead-binding among erythrocyte
fractions are due to genetic polymorphism or to environmental differences such as vitamin and
trace mineral nutritional status, nor do we understand the extent to which these lead-binding
proteins may be induced by elevated lead exposure.

5.1.3 Plasma-Extracellular Fluid Compartment

Stable lead isotope studies allow estimation of the total blood lead volume of distribution
(Rabinowitz et al. 1976). This volume is much larger than the volume of blood, averaging about
9.7 kg in a sample of five adult men whose average estimated blood volume was about 5.7 kg.
The average ratio of volume of distribution to blood lead was about 1.7. The average residence
time in blood was about 30 days. This suggests that the extra volume of distribution was due at
least in part to distribution in a larger fluid volume. It is plausible to assign this to lead in
extracellular fluids (denoted ECF) that exchange rapidly with plasma lead at the time scales of
interest, a few hours to a day, but are not accessible with ordinary blood sampling intervals of six
weeks or more. Support for the existence of an ECF pool that is kinetically indistinguishable
from plasma at intervals longer than a few minutes is provided by several authors. Chamberlain
et al. (1978), using lead radioisotopes, have argued for rapid transfer of lead into some readily
accessible ECF. The existence of an intermediate ECF pool is sketched by Cavalleri et al.
(1981), and is hinted at by Mallon (1983) and by Harley and Kneip (1985) in their discussion of
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a delay compartment they call "ECS [extracellular space]- gut".
Therefore, in the IEUBK Model, we have chosen to combine the plasma pool with the
kinetically similar ECF as the central compartment.

5.2 Compartmental Specification for Model

The biokinetic component of the IEUBK model is structured as a compartmental model
with transfer times between compartments as basic model building elements. The compartments
are:

Plasma-extracellular fluid (ECF)
Red blood cells

Liver

Kidney

Trabecular (spongy) bone
Cortical (compact) bone

Other soft tissues

The whole blood consists of the plasma portion of the plasma/ECF pool along with the red
blood cells. The [IEUBK model assumes that lead is transported between the central plasma-ECF
compartment and most of the other compartments by a first-order kinetic process whose rate
coefficients are independent of the compartment lead concentrations. The only rate coefficient
that is concentration-dependent is the plasma/ECF to red blood cell coefficient, which assumes
that the lead holding capacity of the red blood oeﬂs is saturable. Here, a maximum lead holding
capacity of 1200 pg/dL is assumed for the red blood cells, based on Marcus (1993) reanalysis of
data from Mallon (1983).

The above assumptions concerning the model structure and the nature of the kinetic
transfer of lead between compartments result in the biokinetic component of the IEUBK model
being governed by Equations B-6a through B-6i. This set of first-order differential equations

governs the age-dependent accumulation of lead masses in the various body compartments. The
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basic tenet underlying the formulation of the differential equations is mass-balance.

5.2.1 Fluid Volumes and Organ Weights

As mentioned earlier in this document, many of the biokinetic calculations require body
fluid volumes and organ weights as a function of the age of the child. The growth equations
were fitted using a double logistic model (El Lozy, 1978, Karlberg, 1987), where the data sets
for organ volume or weight were composites of childhood growth data from several handbooks
(Altman and Ditmer, 1973; Spector, 1956; Silve et al., 1987). The fluid volumes calculated in
Equations B-5a through B-5d are for blood (VOLBLOOD(t)), red blood cells (VOLRBC(t)),
plasma (VOLPLASM(1)), and ECF (VOLECEF(t)). All fluid volumes are in deciliters (dL). The
weights calculated in Equations B-5e through B-5m are of the child's extra-ceilular fluid
(WTECEF(t)), body (WTBODY(t)), bone (WTBONE(t)), trabecular bone (WTTRAB(t)), cortical
bone (WTCORT(t)), kidney (WTKIDNEY (t}), liver (WTLIVER(t)), other soft tissue
(WTOTHER(t)), and blood (WIBLOOD(t)). All weights are in kilograms (kg).

As indicated in Equation B-5d, the ECF volume is assumed to be 73% of the blood volume
based on Rabinowitz et al. (1976). This is the difference between the volume of distribution and
the blood volume, which is assumed to be an actual physical volume. Other interpretations are
possible. Rabinowitz measured the volumes in adults. These were proportionally adjusted on an
age-relative basis for use in the model. Equations B-5e through B-5] are for organ Weights and
body weight. The divisor of 10 in Equation B-5e and B-5m converts deciliters of blood to liters
of blood. The density of the ECF is assumed to be similar to water, one kg/L.

As indicated in Equation B-5g, for a child older than 12 months, WTBONE(}) is assumed
to be a linear function of age. The slope and intercept parameters were estimated by fitting a
simple linear regression model to data from Harley and Kneip (1985). Since little bone
' information was available for children less than one year of age, the weight of the bone is
assumed to be a constant percentage of the weight of the body up to one year of age. As
indicated in Equations B-5h and B-5i, trabecular and cortical bone are assumed to account for
20% and 80%, respectively, of the total bone weight (Leggett et al., 1982). As indicated in
Equation B-5m, the density of blood is assumed to be 1.056 kg/L. Finally, as indicated in
Equation B-51, the weight of the other soft tissues is determined by subtracting the weight of all
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other body compartments from the weight of the body.

5.2.2 Compartmental Lead Transfer Times

The biokinetic model determines the compartmental lead transfer times as a function of
tissue to blood lead concentration ratios. The ratios of lead concentration in the kidney
(CRKIDBL(t)), liver (CRLIVBL(t)), bone (CRBONEBL(})), and other soft tissue
(CROTHBL(1)) (equations B-4a to 4d) to blood concentration are calculated based solely on the
age of the child. The ratio of the lead mass in blood to the lead mass in plasma-ECF
(RATBLPL) is assigned a value of 100 (equation B-3).

The compartmental lead transfer time equations (Equations B-1, B-2) model the movement.
of lead between the plasma-ECF and the red blood cells, the liver, the kidney, bone (trabecular
and cortical), and other soft tissue, and the elimination pathways of skin, hair, and feces (See
Figure 1). The rates at which the lead moves between the compartments are based on
WTBODY(t) (equation B-5f), WTKIDNEY(t) (B-5j), WTLIVER(t}(B-5k), WITBONE(t)(B-5g),
WTTRAB(t)(B-5i), WTCORT(t)(B-5h), WTOTHER(t)(B-51), VOLBLOOD(t)(B-52),
CRKIDBL(t)(B-2h), CRLIVBL(t)(B-2¢, B-2f), CRBONEBL(t)(B-1h), CROTHBL(t)(B-2n, B-
20), and RATBLPL(B-3).

First, the lead transfer times (Equations B-1, B-2) from blood to urine (TBLUR(t)}(B-5c),
the liver (TBLLIV(3))(B-5b), the kidney (TBLKID(t))(B-5d), bone (TBLBONE(t))(B-5e), and
other soft tissues (TBLOTH(t))(B-5¢) are estimated. The transfer times are allometrically scaled
by the ratio of WIBODY (t)(B-5f) to the weight of a child at 24 months (12.3 kg) raised to the
1/3 power. That is, multiplying the transfer times TBLUR(24), TBLLIV(24), TBLKID(24),
TBLBONE(24), and TBLOTH(24) by the 1/3 power of the ratio of WTBODY(t) to
WTBODY(24), [%T%::T‘:f})- ** yields TBLUR(t), TBLLIV(t), TBLKID(t), TBLBONE(t), and
TBLOTH(t), respectively. The 1/3 power scaling exponent for transfer times (-1/3 power for

transfer rates) corresponds to surface area scaling for growing children. That is, the surface area
of the organ increased in proportion to the 2/3 power of child's increase in weight, and this
increase in weight is a function of the child's age. For some applications, the empirical value of |
0.26 fits better than 0.33 (Mordenti, 1986), but the difference is numerically unimportant in this
application because the child grows only from 3.4 kg to 20 kg in this age range. In earlier
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versions of the model, scaling was based on organ weight or volume of fluid pool. For this
version, all scaling is based on body weight to the 1/3 power, which is roughly the equivalent of
body surface area scaling rather than organ surface area scaling. This simpler approach was-
adopted because of the uncertainties about other developmental changes in tissues that might
affect age-dependent biokinetics, so that the more complicated earlier scaling approximation was
not justified at this time.

Next, the lead transfer time from blood through the bile duct to feces (TBLFEC(t)) is the
product of TBLUR(t) and the ratio of the urinary lead elimination rate to the endogenous fecal
lead elimination rate (i.e., the ratio of endogenous fecal lead transfer time to urinary transfer
time, denoted RATFECUR). TBLOUT(t), the lead transfer time from blood to the elimination
pool via the soft tissue is TBLFEC(t) times the ratio of the endogenous fecal lead elimination
rate to the elimination rate via soft tissue (RATQUTFEC). The lead transfer time from bone to
blood (TBONEBL(Y)) is the product of CRBONEBL(t), TBLBONE(t), and the ratio of the
weight of the bone (WTTRAB(t) plus WTCORT(t)) to VOLBLOOD(t) divided by 10.

At low concentrations when the red blood cell is nearly unsaturated, the ratio of lead mass
in blood to lead mass in plasma-ECF (RATBLPL) is set to 100 (Equation B-3). The plasma-
ECF to red blood cell lead transfer time (TPLRBC) is directly assigned a nominal value of 0.1
days. This value was chosen from a plausible range of values (0.02 to 0.25) based on several
studies that examined the fate of injected, ingested, or inhaled lead over very short time intervals
(Hursh and Suomela, 1968, Chamberlain et al., 1978, deSilva, 1981a,b, Campbell et al., 1984).
The selection of 0.1 days represents our best judgment on the appropriate time scales for the
composite process of the transfer of lead through the red blood cell membrane to the various
lead-binding components of the red blood cell. An adjustment to the transfer time from plasma
to red blood cells must then be made in the general case where the red blood cell is partially
saturated (TBLRBC2). Our model assumption is that the transfer time from plasma to red blood
cells increases with increasing saturation (Equation B-2.5). Transfer between plasma and red
blood cells is assumed to show litﬂe age dependence apart from dependence on concentration.

Fixing the value of RATBLPL also affects the relationship of TBLUR to TPLUR and that
of TBLBONE to TPLBONE. TRBCPL, the red blood cell to plasma-ECF lead transfer time, is
the product of TPLRBC and RATBLPL minus a constant. The transfer of lead from plasma to
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red blood cells is partially limited by the finite capacity of the red cells to bind and retgin lead.
The whole blood lead concentration is therefore not directly proportional to lead uptake rates,
especially at high levels of exposure. At high levels of exposure, the plasma lead concentration
will increase in proportion to the uptake rate, but red blood cells that ‘a.re partially saturated will
increase with increasing uptake much more slowly, eventually approaching a maximum
concentration, CONRBC. Therefore, the whole blood (weighted sum of lead concentration in
plasma and lead concentration in red blood cells) will contain an increasingly larger fraction of
the lead in plasma as uptake rates increase. The calculated blood lead concentration shows little
dependence on TPLRBC for a wide range of values, once RATBLPL is specified (Equation B-
2b).

The lead transfer times from plasma to urine (TPLUR(t)), the liver (TPLLIV(t)), the kidney
(TPLKID(t)), and other soft tissue (TPLOTH(t)) are the ratios of TBLUR(t), TBLLIV(t),
TBLKID(t), and TBLOTH(t) to RATBLPL, respectively. The transfer time from blood to urine
(TBLUR, days) is estimated by the blood lead mass (pg) divided by the rate (ug/day) at which
lead is eliminated from the blood through' the urine. A literature review revealed 17 adult studies
for evaluating TBLUR (See Table B-1). The adult value of TBLUR was allometrically scaled to
the range 0 to 84 months based on the proportionality between the blood volume (VOLBLOOD,
dL) and the glomerular filtration rate (GFR, dL/day) for that age group. No direct data on the
ratio VOLBLOOD/GFR was available, therefore, since GFR is proportional to body surface
area for infants (10-20 weeks) and toddlers (24 months) (West, 1948) and for ages > 24 months
(Weil, 1955), scaling by surface area is equivalent to scaling by GFR.

TLIVFEC(t), TKIDPL{(t), and TOTHOUT(t), the lead transfer times from the liver to the
feces, the kidney to the plasma-ECF, and the other soft tissue to the elimination pool are the
products of the concentration ratios of lead in the tissues to blood (CRLIVBL(t), CRKIDBL(}),
and CROTHBL{Y)), the transfer times from blood to the tissue of elimination pool (TBLFEC(t),
TBLKID(t), and TBLOUT(%)), and a ratio of the weight of the tissue (WTLIVER(}),
WTKIDNEY(t), and WTOTHER(t)) to VOLBLOOD(t). The lead transfer times from the liver
to the plasma-ECF (TLIVPL(t)) and the other soft tissue to the plasma-ECF (TOTHPL(t)) are
similarly calculated. The distinction is the transfer time term. TLIVPL(t) replaces TBLFEC(t)
by a term involving TBLLIV(t) and TBLFEC(t), while TOTHPL(t) replaces TBLOUT(t) with a
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term involving TBLOTH(t) and TBLOUT(t).

While we recognize the complexity of bone kinetics, the Technical Review Workgroup for
Lead concluded that a simplified approximation of bone lead kinetics would be adequate for
modeling the relationship between bone and blood in young children. The primary purpose of
the cortical and trabecular compartments in the IEUBK model is to provide the potential for
long-term retention and storage of lead as an endogenous or internal source. Several more
complicated models for bone lead kinetics have been developed (Marcus, 1985¢,d; OFlaherty,
1992; Leggett, 1993).

The kinetics of lead in bone can be extremely complicated. Bone is conventionally divided
into two types, cortical (compact or dense bone material) and trabecujar (cancellous or spongy
bone, often plate-like structures). Andriot and O'Flaherty (1993) have shown that bulk physical
properties of cortical and trabecular bone in young mammals may be very similar. In view of the
similar concentration ratios between lead in different bones and whole blood lead that may be
calculated for children based on autopsy data (Barry 1981), we concluded that the biokinetic
properties of cortical and trabecular bone may also be rather similar for children less than 84
months.

In a detailed examination, skeletal tissue cannot be regarded as a single well-mixed fluid-
like compartment. Various models for lead transport in bone have been proposed, including

_non-first-order spatial diffusion models (Marcus 1983, 1985¢), first-order models with a series of
radial concentric rings (O'Flaherty 1992) based on similar models for other bone-seeking
elements (Marshall and Onckelinx 1968; Marshall 1969), and as a series of bone compartments
that may be characterized as surface, shallow, or deep slow-turnover pools (Cristy 1986; Leggett
1993). Marcus (1985¢,d) showed that a compartmental approximation to bone lead diffusion
was possible, where the time scale for the longest-term retention depended on diffusion
parameters. The most appropriate compartmental model depends on the intended purpose of the
model. The [EUBK model uses a single compartment for each of cortical and trabecular bone
tissue, with a long retention time.

Isotopic tracer studies in adults do not usually allow detection of longer-lived plasma lead
kinetic components. For example, in a three compartment first-order pharmacokinetic system,

the elimination of lead from a single isotopic intravenous injection can be described as the sum
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of three exponential terms (Gibaldi, 1982). In the central compartment (either plasma or whole
blood, depending on the model) the lead concentration can be written as the sum of three
exponentially decreasing functions of time. The "fast" component goes to zero very quickly
with increasing time from injection, and the "slow" component goes to zero only over a
relatively long period of time. The IEUBK Model was designed for application to exposure
scenarios in which there are long periods of relatively steady exposure, not to acute or relatively
rapid sub-chronic exposure scenarios, so that only the slowest transfer components affect
kinetics on the time scales of interest. In essence, the equivalent model is plasma exchange with
- the long-term lead-binding constituents of the skeleton.

Both the lead transfer times from the trabecular bone and cortical bone to the plasma-ECF
(TTRABPL(t), TCORTPL{t)), are assigned TBONEBL(t). TPLTRAB(t) and TPLCORT(t), the
lead transfer times from the plasma-ECF to the trabecular and cortical bones are calculated as the
ratio of TBLBONE(t) to a percentage of RATBLPL. TPLTRAB(t) uses 20% of RATBLPL in
the denominator, while TPLCORT(t) uses 80% of RATBLPL.

Finally, TPLRBC2(t), the scaled lead transfer time from the plasma-ECF to the red blood
cells, is calculated as the ratio of TPLRBC to a term involving MRBC, VOLRBC, and the
maximum lead concentration capacity of red blood cells (CONRBC). CONRBC is assigned a
value of 1,200 ug/dL, based on estimates for adults (Marcus, 1985a), and infant baboons using
data in Mallon (1983). '

S5.2.3 Tissue Lead Masses at Birth

The iterative nature of the biokinetic solution algorithm requires that compartmental lead
masses be determined for a newbom child to begin the solution process. As indicated in
Equation B-7a, the blood lead concentration of a newborn child (PBBLDO) is assumed to be
85% of the user-specified mother's blood lead concentration (PBBLDMAT). This relationship is
discussed in U.S. Environmental Protection Agency, (1989a, pp.C-15 to C-18) and is based on
data from the sources referred to in that document. Bioconcentration ratios in newborn children,

using data in Barry (1981) were used to calculate tissue lead burdens at birth.
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5.2.4 Compartmental Lead Masses and Blood Lead Concentration

The differential equations corresponding to the compartmental structure discussed in
Section 5.1.1 represent the continuous lead kinetics in a child's body. From a computational
viewpoint, however, the change in time does not occur continuously, but in discrete timesteps.
Therefore, for the purpose of calculations, the differential equations labeled Equations B-6a
through B-6i are represented by difference equations labeled Equations B-6.5a through B-6.51.
For instance, the differential Equation B-6d

dMRBC(t) MPLECF(t)  MRBC(Y)
Coat TPLRBC2(t) TRBCPL

is represented by the difference Equation B-6.5d

MRBC(f) - MRBC(t - TimeStep) MPLECF() MRBC(t)
TimeStop TPLREBC2(t) TRBCPL'

The backward Euler solution algorithm solves the difference equations for the compartmental
lead masses at the end of the iteration time "t". These compartmental lead masses are then used
to determine the child's blood lead concentration at time "t". Details of the difference equations
and the sotution algorithm are provided below.

The difference equations are structured to represent the lead masses, transfer rates, and
elimination rates at the beginning and end of a time interval. The argument "t-TimeStep"
denotes lead masses and transfer rates at the beginning of the time interval, while the argument
"t" represents these quantities at the end of the interval. The length of the interval is denoted by
the user-specified variable, TimeStep. The backward Euler solution algorithm solves these
difference equations so that the child's compartmental lead masses and blood lead concentration
at the end of the iteration may be determined.

The backward Euler solution algorithm is a stable, time-efficient numerical algorithm. The
stability of the algorithm allows larger timesteps to be employed, thus reducing the required
computational time. The basic premise of the solution algorithm is that the increase in a
compartmental lead mass over an interval divided by the length of the interval is equal to the
total lead inflow rate minus the total lead outflow rate at the end of the interval. The solution to
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the difference equations over a specified interval gives the compartmental lead masses at the
end of the interval as a function of the inflow and outflow rates at the end of the interval.
Equating the unknown changes in the compartmental lead mass over the interval to the
difference between the unknown lead inflow and outflow rates at the end of the interval yields a
solution. That is, the equation for the compartmental lead masses at the end of the interval can
be solved in terms of the compartmental lead masses at the beginning of the interval. The
equations employed by the backward Euler solution algorithm are presented as Equations B-9a
through B-9i.

The compartmental lead masses for a newborn child discussed in Section 5.2.3
(MPLECF(0), MRBC(0), MPLASM(0), MCORT(0), MKIDNEY(0), MLIVER(0),
MOTHER(0), and MTRAB(0)) are used as initial values to begin the iterative biokinetic solution
algorithm. Given these parameters, the lead masses for the red blood cells (MRBC(t)), liver
(MLIVER(})), kidney (MKIDNEY(t)), trabecular and cortical bone (MTRAB(t), MCORT(t)),
plasma-ECF (MPLASM(t)), and other soft tissue (MOTHER(Y)) are calculated. Each of these
parameters are calculated at each iteration through age 84 months. As indicated in Equations B-
10a and B-10b, the child's blood lead concentration (PBBLD(t)) is calculated as an average

monthly value over the number of time intervals in the month.

6.0 PROBABILITY DISTRIBUTION COMPONENT

The fourth component of the IEUBK model estimates, for a hypothetical child or
population of children, a plausible distribution of blood lead concentrations centered on the
geometric mean blood lead concentration predicted by the model from available information
about children's exposure to lead. From this distribution, the model calculates the probability
that children's blood lead concentrations will exceed the user-selected level of concern.

Risk estimation and plotting of probability distributions requires the selection of two
parameters, the blood lead level of concern or cutoff level and the Geometric Standard Deviation
(GSD). A value of 10 ug/dL is generally used as the blood lead level of concern, but other
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values can be selected by the user.

The GSD is a measure of the relative variability in the blood lead of a child of a specified
age, or of children from a hypothetical population, whose lead exposures in a specified dwelling
are known. Many factors can cause children in environments with similar environmental lead
concentrations to have different blood lead concentrations. These include biological and
behavioral variability, measurement variability from repeat sampling, sample location
variability, and analytical error. In the model, the GSD is intended to reflect only individual
blood lead variability, not variability in blood lead concentrations where different individuals are
exposed to substantially different media concentrations of iead.

The determination of the GSD and its use in risk estimation are discussed in detail in the
Guidance Manual. The Guidance Manual! describes the selection of the GSD value of 1.6, based
on calculations of GSDs from a number of specific sites. The manual emphasizes that the GSD
values should be similar at all sites and site-specific values should not be needed unless there are
great differences in child behavior and lead biokinetics among different sites. It also describes
how to estimate a site-specific, inter-individual GSD when necessary.

7.0 USER CONTROL WITHIN THE IEUBK MODEL

The purpose of this section is to explicitly outline the choices a user of the IEUBK lead
model may make in estimating a child's blood lead concentration. Throughout Sections 3
through 5, references have been made to "user- specified" parameters or decisions. Two flow-
charts are provided to illustrate where the user-specified parameters or decisions occur and
exactly which parameters are affected. Parameter names are listed in each flow-chart. Table B-1
provides an index of all the parameters a user may access.

Figure 6 describes the overall structure of the IEUBK lead model emphasizing the

.decisions and input parameters a user may control. From the Main Menu and the Parameter
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User-Specified Dacisions and Mediz-Specific
Consumption and Lead Concentration Parameters
/ Alr J L Diet J (DustiSoll ) [ Water j

promra Component >

Madia-Specific Lead intake: User-Spacified Media-Specific
Lead Absorption Parameters:
EXAIR(Y)
INDIET(t) AlR: air_absorb{((t)
INDUST(t) DIET: ABSF
INDUSTA(t) DUST: ABSD
INSOIL(Y) SOIL: ABSS
INWATER(t} WATER: ABSW
INOTH ER(t) OTHER: ABSO

<U ptake Component >

User-Specified Biokinetic
Total Lead Uptake: Madel Paramstsrs:
PBBLDMAT
Uptake(t) TimeStep

<Blokineﬂc Componant >

Blood Lead Concentratien;
PBBLD(t)
K 2
( Exit Lead Mode! >

Figure 6. Structure of the IEUBK model with emphasis on the user control of input parameters

and decisions.

47




Entry Submenu, the user may make several decisions on the sources of lead intake. These
decisions and the associated user specified parameters are shown in Figure 6. Turning to Figure
7, the user may provide the outdoor air lead concentration (out air concentration), the
percentage of outdoor air lead that becomes indoor air lead (indoorpercent), the time a child
spends outdoors (time out(t)), and the ventilation rate for a child (vent rate(t)).

The diet model component requires the user to decide if the dietary lead intake should be
calculated from individual dietary sources. The user may choose to enter the dietary lead intake
directly (user diet intake(t)). Otherwise, individual sources of dietary lead are considered. The
user may enter the lead concentration for fish (UserFishConc), game animal meat
(UserGameConc), home grown fruits (UserFruitConc), and home grown vegetables
(UserVegConc) and the fraction of meat consumed as fish or game animal meat
{userFishFraction, userGameFraction), fruit consumed as home grown fruit (userFruitFraction),
and vegetables consumed as home grown vegetables (userVegFraction).

For the water lead model, the user may first enter the child's water consumption
{water consumption(t)). Next, the user decides which of the two model options to use to
determine the water lead intake. Either the user can assume a constant water lead concentration,
by entering values for constant water conc, or the user may calculate the water lead
concentration by constdering several sources of water. If several sources of water are to be
considered, the user would enter the fraction of total water consumed as first draw water
(FirstDrawFraction) and fountain water (FountainFraction) with the remainder being the amount
of water consumed as HomeFlushed. The lead concentration in first draw water
(FirstDrawConc), fountain water (FountainConc), and a flushed faucet at home
(HomeFlushedConc) are also entered. ,

In the soil and dust lead model option, the user may first enter the lead concentration in soil
(soil concentration(t)). The user may then decide if the household dust lead concentration is to
be calculated. The user may enter the indoor household dust lead concentration
(user dust.conc(t)) directly. This choice is used when household dust is a measured source of
dust exposure for the child. |

If the user chooses to calculate the dust lead concentration, then the user may enter the

percentage of soil lead concentration that characterizes the soil contribution to indoor household
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Figure 7. User specified decisions and parameters that determine the media-specific

consumption and lead concentration parameters.
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dust lead (contrib percent), the user may also enter a factor that relates the air lead contribution
to house dust lead concentration (multiply factor). Once these have been entered, the user may
decide that alternate sources of dust lead should be considered. The user may enter values for
the fraction of total dust ingested as dust from any of the following: the parents occupation
(OccupFraction), school (SchoolFraction), daycare (DaycareFraction), secondary home
(SecHomeFraction), and paint (PaintFraction), and the corresponding dust lead concentration
from the parents occupation (OccupConc), school (SchoolConc), daycare (DaycareConc),
secondary home (SecHomeConc), or paint (PaintConc).

Finally, for all dust model options, the user may enter the values for the percentage of dust
and soil ingested as soil (weight soil) and the amount of soil and dust ingested (soil ingested).

Returning to Figure 6, once the decisions have been made and the parameter values entered
for the media-specific consumption and lead concentrations, the calculations for the exposure
component are performed. The ocutput from this component are the media-specific lead intakes,
EXAIR(t), INDIET(t), INDUST(t), INDUSTAC(t), INSOIL(t), INWATER(t), and INOTHER(t).
These values are used as input into the uptake component.

The user may then enter the media-specific lead absorption parameters. These parameters
are the passive absorption fraction at low doses (PAF), the net absorption coefficient for air lead
(air absorb(t)), and the total absorption coefficient for dietary lead at low doses (ABSF), dust
lead (ABSD), soil lead (ABSS), and water lead (ABSW), and other ingested lead sources
(AB SO). UPTAKEK(t), the child's total lead uptake, is calculated by combining all of the user-
provided default parameters in the exposure and uptake components of the model.

The final set of parameters the user may specify are the maternal blood lead concentration
(PBBLDMAT) and the length of the time-step to be used in the solution algorithm (TimeStep).
PBBLDMAT and TimeStep serve as input to the biokinetic component, where the child's biood
lead concentration (PBBLOODEND(t), averaged across each month, is calculated.
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APPENDIX B: DESCRIPTION OF PARAMETERS
IN THE IEUBK LEAD MODEL
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