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 National Research Council (NRC) recommended that health outcomes be tiered and 
further prioritized given the volume of data on iAs, particularly human data (NRC, 2013).

 The 2019 updated problem formulation includes the refined scope that specifies which 
health outcomes are prioritized for dose-response analyses and toxicity value derivation.

 The protocol includes the methods and approaches proposed for use in developing the 
assessment, including systematic review and hazard characterization methods used to 
prioritize health outcomes. 

 This poster presents diabetes as an illustrative example.

Study Evaluation for Epidemiological Studies

 Risk of bias (RoB) was evaluated using questions adapted from OHAT (NTP, 2013) which 
considers study design, selection bias, confounding, exposure measures, outcome measures, 
and selective reporting.

 RoB was assessed for each study question using a four point scale that includes ratings of 
definitely low bias, probably low bias, probably high bias, and definitely high bias. 

Strength of Evidence Judgements

 Robust and Moderate describe epidemiological evidence that supports a hazard. These 
terms are differentiated by the quantity and quality of information available to rule out 
alternative explanations for the results.  

 Slight evidence includes situations in which there is some epidemiological evidence that 
supports a hazard, but there are substantial uncertainties in the data and a conclusion of 
Moderate does not apply. 

 Indeterminate describes a situation where there are no epidemiological studies available 
for that evidence stream or the evidence is inconsistent and of low confidence, and cannot 
provide a basis for making a conclusion in either direction.  

 Compelling evidence of no effect represents a situation where extensive epidemiological 
evidence across a range of populations and exposures identified no association. This 
scenario is rare.

 Both slight and indeterminate represent situations where the epidemiological evidence if 
insufficient to support a hazard, as uncertainty is too large.

 NRC prioritized health outcomes into three tiers (NRC, 2013): Tier 1 (evidence of a causal 
association determined by other agencies and/or in published reviews); Tier 2 (other 
priority outcomes); Tier 3 (other endpoints to consider) 

 EPA considered strength of the epidemiological evidence for hazard by
 Relying on conclusions from assessments conducted by other health agencies (ATSDR, 

IARC, WHO, NTP) or 
 Conducting new systematic reviews of the existing literature.

 Epidemiology studies will be the focus of the assessment, consistent with prior NRC input.
 Animals are not as sensitive to arsenic compared to humans due to interspecies 

metabolism differences. 
 Given the availability of low dose epidemiology studies, mechanistic data (which is 

largely based on animal and in vitro studies) is not considered critical for low dose 
extrapolation. However, as recommended by NRC, EPA inventoried mechanistic 
evidence (Protocol, Appendix A) and conducted MOA analyses to assess utility for 
reducing uncertainties in dose-response analysis (Poster 2). The analyses did not 
identify a clear  application of the mechanistic evidence given the abundance of human 
studies.

Evidence Profile Table (diabetes example)

Studies (by design) and study confidence 
(i.e. based on risk of bias and sensitivity 

considerations2)
Factors that increase confidence Factors that 

decrease confidence
Summary of 

findings

Strength of 
evidence 
judgment 

Co
ho

rt
 S

tu
di

es
 

Studies were well-designed with well-
characterized exposures, large number of 
subjects with long duration exposures, 
sufficient follow-up for latency, and used 
iterative and scientifically rigorous 
analyses; thus, they were generally 
interpreted with high or medium 
confidence

Taiwan:Tseng et al. (2000), Chen et al. 
(2012), Hsu et al. (2013); United States:
Ettinger et al. (2009); 
Denmark: Bräuner et al. (2014); Italy: 
D'Ippoliti et al., (2015)

 Consistent positive 
associations observed in 
populations across 3 
continents, primarily at > 10 
µg/kg-day

 Exposure-dependent 
associations observed that 
establish temporality in 
studies in which prolonged 
arsenic exposure was 
associated with diabetes

 Low risk of bias across the set 
of studies, due in part to well-
characterized exposures

 Exposure-response gradient 
observed across studies

 Indirectness with 
evaluation of 
metabolic 
syndrome and 
insulin sensitivity 
observed in one 
study

 Small sample size 
in one study

The set of well-
conducted 
studies report 
generally 
consistent, 
positive 
associations 
across diverse 
populations > 10 
µg/kg-day , with 
some evidence 
for exposure-
dependent 
changes within 
and across 
studies. 

⨁⨁⨁

ROBUST

Supported 
primarily by
consistent and 
reliable evidence 
from cohort and 
case-control 
studies that rules 
out chance, 
confounding, and 
other biases with 
reasonable 
confidence. 

This evidence is 
based on 
associations 
generally 
observed above 
10 µg/kg-day 
arsenic intake in 
general 
population 
studies across 
the world. 

Additional 
support is 
provided by 
consistent 
associations in 
both cross-
sectional and 
ecological 
studies, although 
some 
uncertainties 
remain; this 
coherence across 
diverse study 
designs further 
strengthens the 
judgment. 
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Studies were generally well-designed 
with well-characterized exposures, 
included large population with adequate 
number of cases, precise case definition, 
and used iterative and scientifically 
rigorous analyses; thus, they were 
generally interpreted with high or 
medium confidence

United States: James et al. (2013), Kim et 
al. (2013);
Bangladesh: Pan et al. (2013b), Nizam et 
al. (2013); Mexico: Coronado-González et 
al. (2007); 

 Consistent positive 
associations observed in 
populations across 3 
continents, primarily at > 10 
µg/kg-day 

 Not all studies 
included 
individual-level 
exposure data 

The set of well-
conducted 
studies report 
generally 
consistent, 
positive 
associations 
across diverse 
populations at > 
10 µg/kg-day, 
with some 
evidence for 
exposure-
dependent 
changes 
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Studies were generally well-designed, 
with well-characterized exposures; 
however, some were limited by small 
sample size, interference of organic 
arsenicals in classifying exposure, or 
deficiency identifying cases, resulting in 
general interpretations of medium
confidence 

United States: Gribble et al. (2012), 
Navas-Acien et al. (2008), Navas-Acien et 
al. (2009), 
Steinmaus et al. (2009); Korea: Rhee et 
al. (2013); 
Bangladesh: Islam et al. (2012); Mexico: 
Del Razo et al. (2011); Taiwan: Chen et al. 
(2011), Lai et al. (1994);
South Korea: Kim and Lee (2011); 
China: Li et al. (2013), Feng et al. (2015);
Canada: Feseke et al. (2015)

 Consistent positive 
associations observed in 
diverse populations across the 
world, although 

 Exposure-dependent 
associations observed across 
studies

 Series of studies 
conducted using 
NHANES data 
limited by authors’ 
inability to 
interpret organic 
arsenic levels 
derived from 
seafood intake. 
Each author 
subsequently 
addressed it in 
their own way 
with differing 
results. 

 Imprecision: 
although consistent 
increases in odds 
ratios (or similar 
measures) were 
generally observed 
across studies, 
several did not find 
statistically 
significant 
increases, 
introducing 
uncertainty 

A number of 
recent cross-
sectional studies 
of populations 
across the world 
consistently 
reported a 
positive 
relationship 
between arsenic 
exposure and 
diabetes
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Studies were limited to analyses in 
Taiwan and one study in United States 
and possessed some limitations in the 
quantitative characterization of 
exposure, leading to general 
interpretations of medium confidence

Taiwan: Chiu et al. (2006); Tsai et al. 
(1999);
Wang et al. (2003); United States: 
Meliker et al. (2007)

 Consistent positive 
associations observed

 Some concern for
risk of bias across 
the set of studies, 
due largely to 
deficiencies in 
exposure 
assessment and 
inability to 
account for 
potential 
confounding from 
individual-level 
variables

 Limited number of 
studies, primarily 
only in one 
population

Few ecological 
studies with 
majority looking 
at diabetes 
mortality that 
provide 
consistent 
positive 
associations. Conclusions 

 Health outcomes with robust or moderate evidence were prioritized for dose-response
 Prostate cancer, pancreatic cancer, and renal disease were not prioritized (slight evidence) 
 Immune effects not prioritized (no suitable data sets for analysis)
 Prioritization of health outcomes for dose-response analysis is summarized in Table 5-3 of 

the protocol 

 An evidence profile table summarizes evidence integration conclusions. 
 Approach supported in the National Academy of Sciences (NAS) review of implementation of 

systematic review in the IRIS Program (NAS, 2018).
 Tables are organized by study design (prioritizing designs with higher confidence studies) 

because studies of similar design generally possessed the same factors that increased or 
decreased confidence in the evidence base. 

Characterization of Hazard

Health outcome

NRC 

Tier EPA strength-of-evidence judgement of human evidence of a causal association

NRC Tiers: Tier 1: Evidence of causality; Tier 2: Other priority outcome; Tier 3: Other endpoints to consider

Lung cancer Tier 1 

Robust.  Based on NRC Tier 1 and conclusions of “carcinogenic” for lung cancer from 

other assessments (ATSDR, 2016; NTP, 2016; IARC, 2012; WHO, 2011a, b; ATSDR, 2007; 

IARC, 2004b).

Bladder cancer Tier 1

Robust.  Based on NRC Tier 1 and conclusions of “carcinogenic” for bladder cancer from 

other assessments (ATSDR, 2016; NTP, 2016; IARC, 2012; WHO, 2011a, b; ATSDR, 2007; 

IARC, 2004b).

Skin cancer Tier 1

Robust.  Based on 1995 EPA conclusion of “known carcinogen” based on skin cancer 

(U.S. EPA, 1995), NRC Tier 1, and conclusions of “carcinogenic” for skin cancer based on 

other assessments (ATSDR, 2016; NTP, 2016; IARC, 2012; WHO, 2011a, b; ATSDR, 2007).

Ischemic heart 

disease
Tier 1

Robust.  Based on systematic review conducted by EPA on diseases of the circulatory 

system (ischemic heart disease and hypertension/stroke), which is similar to 

associations noted in other assessments (ATSDR, 2016; WHO, 2011a, b; ATSDR, 2007) 

and meta-analysisa (Moon et al., 2017a, b; Moon et al., 2013).

Skin lesions Tier 1
Robust.  Based on NRC Tier 1 and conclusions from other assessments (ATSDR, 2016; 

WHO, 2011a, b; ATSDR, 2007). 

Diabetes Tier 2

Robust.  Based on systematic review conducted by EPA, which is similar to associations 

noted in ATSDR (2016), an expert review conducted as part of an NTP workshop (Maull

et al., 2012; Thayer et al., 2012) and a meta-analysisa (Wang et al., 2014).

Pregnancy outcomes 

(fetal and infant 

morbidity)

Tier 2

Robust.  Based on systematic review conducted by EPA on pregnancy and birth 

outcomes (fetal growth, prematurity, and infant growth in the first 5 yr of life), which is 

similar to associations noted in ATSDR (2016) and meta-analysisa by Quansah et al. 

(2015).

Pregnancy outcomes

(fetal loss, stillbirth, 

and neonatal 

mortality)

Tier 3 

Robust.  Based on systematic review conducted by EPA on pregnancy and birth 

outcomes (fetal loss and infant mortality in the first 5 yr of life), which is similar to 

associations noted in ATSDR (2016), review by Bloom et al. (2010), and a meta-analysisa

by Quansah et al. (2015).

Hypertension/  

strokeb
Tier 3

Robust.  Based on systematic review conducted by EPA on diseases of the circulatory 

system (including ischemic heart disease and hypertension/stroke), which is similar to 

associations noted in ATSDR (2016), review by Abhyankar et al. (2012), and 

meta-analysisa (Moon et al., 2017a, b; Moon et al., 2013).

Renal cancer Tier 2
Moderate.  Based on systematic review conducted by EPA, which is similar to 

associations noted in IARC (2012, 2004b) and ATSDR (2016).

Nonmalignant 

respiratory disease
Tier 2

Moderate.  Based on systematic review conducted by EPA, which is similar to 

associations noted in ATSDR (2016).

Neurodevelopmental 

toxicity
Tier 2

Moderate.  Based on systematic review conducted by EPA, which is similar to 

associations noted in ATSDR (2016).

Immune effects Tier 2
Moderate.  Based on systematic review conducted by EPA, which is similar to 

associations noted in ATSDR (2016).

Liver cancer Tier 3
Moderate.  Based on systematic review conducted by EPA, which is similar to 

associations noted in IARC (2012, 2004b).

Health outcomes considered to have slight evidence

Prostate cancer Tier 2
Slight.  Based on systematic review conducted by EPA, which is similar to associations 

noted in IARC (2012, 2004b).

Pancreatic cancer Tier 3
Slight.  Based on systematic review conducted by EPA and associations noted in IARC 

(2004b).

Renal disease Tier 3 Slight.  Based on systematic review conducted by EPA.
aIn cases of Tier 2 or 3 health outcomes, the results and conclusions of systematic reviews conducted by EPA formed the primary 

rationale for identifying a health outcome as having robust, moderate, or slight strength of evidence. For health outcomes that also had 

meta-analyses conducted by outside groups, the meta-analyses are considered supplemental information. Relevant primary studies 

included in the meta-analyses were considered in the systematic reviews conducted by EPA.
bThese outcomes considered along with the larger ischemic heart disease database; the strength of the epidemiologic database was 

based on the full set of all studies for all endpoints.

Note: The results of the systematic reviews and hazard analyses will be included in the assessment and subject to external peer review 

(or cited, if published in the peer review literature). 
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➢ The bladder cancer-based AOPn framework to support the iAs MOA was created using  
literature reviews of bladder cancer idiopathic disease as a starting point. 

➢ Information from published literature on arsenic induced bladder cancer was integrated 
into the bladder cancer AOPn and nodes in the network that arsenic acted upon were 
identified. In this way, we created a bladder cancer-based AOP analysis of iAs MOA (Figure 
3; Table 1).  

➢ While the MOA evaluation identified arsenic-specific mechanisms and risk 
modifiers likely to increase risk of human bladder cancer, the impact and utility of 
mechanistic information on dose-response analyses was minimal.

➢ Much of the primary MOA evidence is based on in vitro studies which raises concerns 
about their applicability to informing low-dose effects.

➢ Ample epidemiological data is available for dose-response, and many studies included 
observations down to US background exposure levels.

➢ Conducting a similar analysis for other prioritized outcomes is hindered by the lack of a 
complete MOA for any health outcome and the likelihood that most, if not all, health 
outcomes associated with arsenic exposure involve multiple interactive MOAs.

Building an Adverse Outcome Pathway Network for Arsenic-Induced Bladder Cancer   (Poster 2)
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In order to develop network analyses we decided to use the Adverse Outcome Pathway 
(AOP) framework. AOPs are chemically agnostic representations that identify the 
sequence of biochemical events required to produce an adverse effect or outcome. AOPs 
begin with a molecular initiating event (MIE) and link to a series of key events (KE) that 
traverse biological complexity starting at the molecular level, through cellular, organ and 
organism effects and culminate in an adverse outcome (AO).

Step 1: Establishing the Disease-Based Biological Pathway for Bladder Cancer 
Development in Humans

➢ To delineate a postulated mode of action for arsenic-induced bladder cancer, the 
molecular basis for bladder tumor development, irrespective of a specific chemical 
insult, was first established.  

➢ The information for building this AOPn was principally derived from current literature 
reviews.

➢ Several key events were identified in the progression of bladder cancer, including 
activation of the Ras-MAPK, PI3K and JAK-STAT pathways. Activation of these 
pathways was associated with genetic alterations in the HRAS and FGFR oncogenes 
that induced constitutive activation of these genes  (see Figure 1).

➢ Inactivation of key tumor suppressor genes, p53 and Rb1, were identified as key 
events (KE) in the progression of bladder carcinoma (Figure 1). 

➢ The AOPn was compared to the KEGG (Kyoto Encyclopedia of Genes and Genomes) 
database for bladder carcinoma in humans to ensure concordance (see Figure 2).

The majority of the evidence 
comes from research groups 
that examined immortalized 
human urothelial cell lines and 
human bladder cancer cell lines 
(UROtsa, EJ-1), although 
evidence for gene expression 
changes in rodent bladder are 
also available. Disruption of the 
pathway and signaling has been 
demonstrated at the level of 
transcriptional expression as 
well as protein expression. The 
arsenic species tested in these 
biological systems were varied 
but predominantly include  
iAsIII and  MMAIII (to which 
UROtsa cell lines are 
particularly sensitive).

Figure 2: KEGG pathway for human bladder cancer induction. 

Adverse Outcome Pathway Network (AOPn) 

Development

Step 2: Identifying Arsenic-specific Modification in the Bladder Cancer Network
➢After establishing a general disease-based network for bladder cancer, information 

on arsenic-specific alterations in the pathway was integrated from published 
literature on arsenic-induced bladder cancer, principally derived from 
epidemiological, in vivo, and in vitro studies that analyzed effects of iAs or its 
metabolites (e.g., monomethylarsonous acid (MMAIII) and dimethylarsonous acid 
(DMAIII) in vitro when the test system is known not to have metabolizing 
capability) at concentrations ≤ 100 µM. 

➢The postulated bladder cancer AOPn (Figure 3) indicates activation of the FGFR 
and HRAS oncogenes, as well as activation of the ErbB2 receptor as molecular 
initiating events (MIE) in the progression of bladder carcinoma. Activation of Ras 
was identified as a key event (KE).  Activation of Ras triggers a number of 
molecular events such as stimulation of the MAPK, VEGF, PI3K-AKT, and JAK/STAT 
pathways which culminate in cell proliferation, angiogenesis, cell survival, and 
ultimately bladder tumor formation.

➢Evaluating the arsenic-specific evidence in relation to the disease-based bladder
cancer AOPn, we identified several KE in iAs-induced bladder carcinoma.
Specifically, iAs may activate Ras signaling through production of reactive oxygen
species (ROS), imbalance of oxidative signaling, or through activation of the ErbB2
receptor and lead to cell proliferation, angiogenesis and metastasis. Ras activation
was also identified as a KE in the progression of idiopathic bladder carcinoma.

➢Additionally, iAs-produced ROS can damage DNA and lead to p53 dysregulation, 
stimulation of matrix metalloproteinases (MMPs), and ultimately angiogenesis and 
metastasis (Figure 3, Table 1).

Conclusions

Adverse Outcome Pathway Network (AOPn) Development

➢ 2015 Inorganic Arsenic (iAs) Assessment Development Plan laid out plans to:

➢ Develop network analyses for endpoints considered to be causally or likely 
causally associated with specific adverse outcomes. Based on National Research 
Council (NRC) recommendations, extensive Mode of Action (MOA) analysis 
were also conducted for bladder cancer to better understand human variability 
and the possible use of mechanistic data to inform low dose extrapolation

➢ The utility of these analyses were evaluated in the context of EPA’s 2005 Cancer 
Guidelines recommendations on use of MOA frameworks to address:

➢ Human relevance of animal tumor responses: MOA analyses are usually applied 
for chemicals with insufficient human data.  iAs is a chemical with a large 
amount of epidemiological evidence.  Hence, MOA is not needed for establishing 
human relevance;

➢ Differences in anticipated response among humans:  extensive information of 
risk modifiers in humans are available in the epidemiologic database.  Hence, a 
MOA analysis to address potential differences in response across human 
populations was not considered essential;

➢ Decisions about the anticipated shape of the dose-response relationship:  Given 
the availability of low dose epidemiological studies, mechanistic data (which is 
largely based on animal and in vitro studies) is not considered critical for low 
dose extrapolation. However, as recommended by NRC, EPA inventoried 
mechanistic evidence (Protocol, Appendix A) and conducted a case study MOA 
analysis for idiopathic bladder cancer to assess its utility for reducing 
uncertainties in dose-response analysis. Bladder cancer was selected due to its 
extensive evidence base as compared to other priority iAs health outcomes. 

Table 1. Representative evidence and references where iAs has been shown to affect the AOPn in bladder.

Figure 3:  Postulated AOPn for iAs-induced bladder cancer in humans.

Figure 1: AOPn for idiopathic bladder cancer in humans.

MAPK Signaling
Pathway 

Activation
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➢ Multiple epidemiological studies exist for some of the well-studied health 
endpoints associated with iAs exposure, however, results are expressed in terms 
of different exposure/dose metrics. 

➢ Physiologically-based pharmacokinetic (PBPK) models may be used to obtain a 
common exposure metric for application in dose-response meta-analysis. 

➢ In this study, a published human PBPK model for iAs oral intake by El-Masri and 
Kenyon (2008) was evaluated using data from U.S. (Churchill County, Nevada) 
and Bangladeshi (HEALS cohort) populations. 

➢ Intake of iAs was examined using data on consumption of iAs-contaminated 
water alone or in combination with data on consumption of arsenic in food (El-
Masri et al., 2018). 

Epidemiological Studies of Human iAs Urine Levels

Parameter HEALS cohort, Bangladesh1 Churchill County, 

Nevada, USA2

Number of observations Total: 11,438 

Male: 4,876

Female: 6,562

Total: 904 

Male: 368

Female: 536
Age (years) Range:17–75 

Median: 36

Range: 45–92

Median: 61
Height (m) Range: 1.30–1.85

Median: 1.54

Range: 1.45–1.95

Median: 1.66
Weight (kg) Range: 24.50–100.00 

Median: 46.00

Range: 44.90–165.80

Median: 79.70
Smoking status Non-smokers: 7,405

Past-smokers: 755

Current smokers ≤10 cigarettes/day: 

1,953

Current smokers >10 cigarettes/day: 

1,314

Non-smokers: 755

Smokers: 149

As water conc. (μg/L) Range: 0.1–864.0

Median: 61.0

Range: 0.86–1850.00

Median: 61.00
Total daily water consumption 

(mL)

Range: 175.0–10,240.0 

Median: 2,850.0

Range: 0.00–

25,260.00

Median: 1893.00
Urinary As conc. (μg/L) Range: 1.0–2,273.0

Median: 87.0

Range: 0.50–856.30

Median: 39.00
Creatinine adjusted urinary As 

conc. (μg/g)

Range: 6.64–5,000.00

Median: 198.40

Range: 2.84–5186.00

Median: 85.44

1Ahsan et al. (2006); 2Calderon et al. (2013); Hudgens et al. (2016) 

➢ The PBPK model was used to estimate total arsenic levels in urine in response to 
oral ingestion of iAs. 

➢ To compare predictions of the PBPK model against observations, urinary arsenic 
concentration and creatinine-adjusted urinary arsenic concentration were 
simulated. 

➢ Both arsenic water and dietary intakes were estimated and used to generate the 
associated arsenic urine concentrations. 

PBPK Model Selection and Modification

Methods (Continued)

The following model inputs and outputs were adjusted for each modeled individual 
(based on bodyweights) during the simulation:

• Arsenic intake rate: 
𝑊𝑎𝑡𝑒𝑟 𝑖𝐴𝑠 𝑖𝑛𝑡𝑎𝑘𝑒 = 𝑤𝑎𝑡𝑒𝑟 𝑖𝐴𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 × 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛𝑡𝑎𝑘𝑒

• Volume of the tissue compartments: 

𝐵𝑊𝑀𝑈𝐿𝑇 × (
𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

70 𝑘𝑔
)

• Urinary excretion rate, L/hr: 
𝑉𝑢𝑟𝑖𝑛𝑎𝑟𝑦 = 0.65 × 𝐵𝑊 × 𝐵𝑊𝑀𝑈𝐿𝑇

• Creatinine excretion rate based on subject specific body weight: 
MCR=β0 + β1∗sex + β2∗BMI + β3∗age + β4∗age2 (Ogna et al., 2015)

Food type Mean (range; µg/day) Source

Food consumption 
(Bangladesh)

Rice (g/day)
• Male: 523
• Female: 300

Watanabe et al. 
(2004)

Vegetable 
(g/day)

• Male:153.00
• Female: 146.88

Khan et al. (2009)

As levels in food (Bangladesh)
Rice (µg/kg)

• 173 Watanabe et al. 
(2004)

• 150 (10–500) Rahman et al. (2009)

• 153 (74–301) Rahman et al. (2011) 

Vegetable 
(µg/kg)

• 12.1 (1.3–22.8) Khan et al. (2010)

• 15 (0–136) Khan et al. (2012) 

As levels in food (U.S.) µg/day
• 33.44 (26–40.9) Kurzius-Spencer et al. 

(2014)

µg/min • 0.04 (0.03–0.05) Tao and Bolger (1999)

Estimation of Dietary iAs Intake to Complement iAs Exposure 
through Ingestion of iAs-contaminated Drinking Water

Results

Creatinine-adjusted urinary As concentrations for the HEALS data set, presented 
by decile of As water levels.

Conclusions

➢ In the HEALs study, model simulations show the need for including dietary 
contribution of iAs exposure in addition to drinking water levels, especially at low 
exposure levels. 

➢ For the Churchill County data, addition of dietary intake rates did not contribute as 
much to the corrections needed to bring the model’s simulations closer to urinary 
excretion data. This may be a result of the type of foods that are consumed in two 
different studies; whereas rice is a major iAs dietary contributor to the HEALS study, 
it is not in the Churchill County study. Water intake levels in Churchill County seem 
to reasonably predict total arsenic urine levels. 

➢ In both cases, the model was able to adequately relate iAs exposure to total urine 
concentrations in low exposure situations. Slight over-production at the higher 
doses may be indicative of saturable kinetics being reached more quickly than 
predicted by the PBPK model simulations.

Creatinine-adjusted urinary As concentrations for the Churchill County data set, 
presented by decile of As water levels.

Relationship between arsenic water levels and 
PBPK model-predicted creatinine-adjusted 
urinary arsenic concentrations for the HEALS data 
set. Left: well water as the only arsenic intake 
source. Right: well-water and dietary exposure as 
the arsenic intake source.

Relationship between arsenic water levels and 
PBPK model-predicted creatinine-adjusted 
urinary arsenic concentrations for the Churchill 
County data set. Left: well water as the only 
arsenic intake source; Right: well-water and 
dietary exposure as arsenic intake source.
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EPA developed an approach that allows for comparison of relative risk estimates across  
studies that use various exposure metrics. Dose-response modeling is used to estimate 
exposures associated with a given increase in relative risk (RRE). The RRE is divided by  
an estimate of the U.S. background level for that exposure metric. This approach involves: 

➢ Selection of datasets: starting from health outcomes with robust/moderate databases, 
a 3-step strategy (see below) was used to select studies for modeling.

➢ Data preprocessing: estimating group-level means, adjusting incidence rates for 
covariates, categorizing outcomes, and considering author-performed trend tests.

➢ Exposure-response modeling: case-control and cohort studies were modeled to predict 
exposures where relative risk (RR) changed by 20% (regardless of endpoint severity 
or prevalence) compared to the RR estimated at U.S. background (Table 2) (RRE20). 

➢ Derivation of RRBs: dividing RRE20 values by estimates of  U.S. background (RRE20/U.S. 
Background). Exposure units for U.S. background estimates differ to match RRE units, 
but are based on similar water and dietary intake assumptions (see Table 2). 

Data Preprocessing

References
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➢ Hazard Identification – Focused on epidemiological studies of iAs health outcomes 
having robust/moderate databases (see Poster 1)

➢ Initial screen – Focused on datasets from cohort and case-control studies. Ecological, 
cross-sectional and continuous (e.g., neurocognitive response measures) datasets not 
considered for purposes of RRE20 derivation for purposes of the RRB analysis.

➢ Secondary screen – Each dataset received a score of 0, 1, or 2 for each rating element 
(Table 1). Datasets for which the sum of  scores was >= 5 were excluded. 

➢ Final screen – Studies with inadequate or conflicting dose-response data were 
removed if issue(s) could not be resolved through communications with authors. 

➢ National Research Council (NRC) recommended that EPA derive risk estimates for 
iAs for health effects with adequate epidemiologic evidence (NRC, 2013). 

➢ EPA developed an approach to provide an efficient, yet also effective, means of 
focusing dose-response analysis efforts given the extent of the epidemiological 
evidence base, and the variance in data quality across health outcomes.

Results

Table 3. RRB Estimates by Health Outcome

Endpoint
Preclinical or Subclinical Clinical Non-Fatal Clinical Fatal

Range of RRBs Median Range of RRBs Median Range of RRBs Median

Bladder Cancer N/A N/A 0.386 - 89.2 6.76 N/A N/A

Diabetes N/A N/A 3.25 - 27.1 3.99 4.87 - 18.6 5.90

DCS 6.86 - 209 29.0 1.10 - 87.5 18.6 1.35 - 181 8.48

Liver Cancer N/A N/A N/A N/A 1.76 - 21.8 4.83

Lung Cancer N/A N/A 7.06 - 8920 37.8 1.64 – 12.7 5.74

Nonmalignant Resp. 

Disease
N/A N/A N/A N/A 2.4 - 29.7 8.28

Pregnancy Outcomes N/A N/A N/A N/A 3.86 - 537 28.4

Renal Cancer N/A N/A 1.07 - 357 28.4 5.41 - 8.97 8.62

Skin Cancer N/A N/A 2.27 - 77.7 37.0 N/A N/A

Skin Lesion N/A N/A 6.52 - 402 18.8 N/A N/A

➢ Case-control studies – adjusted case and control numbers were fit by a logistic model: 
f dose = 1/[1 + exp −a − b ∗ dose ]. Use of a logistic model allows for analysis of 
case-control studies with prospective studies, both having the same binomial-based 
likelihoods contributions from their exposure groups (Prentice and Pyke, 1979).

➢ Cohort studies – counts of cases in each exposure group follow a Poisson distribution: 
oi ~ Poisson [ei × f di ], where oi and ei are observed cases and expected case 
number in the ith exposure group, respectively. Seven continuous dose-response 
models used for f ∙ , including the linear model, power model, 2nd-degree 
polynomial model, Michaelis-Menten model, and the Exponential 2, 3, and 4 models.

➢ Model Fit Assessment and Model Selection – for each dataset, the modeling generated 
estimates of log-likelihood, AIC and χ2 p-value, estimates of model parameters, and 
predicted risks (ORs for case-control; RRs for cohort) at each exposure level, with 
confidence limits. EPA (2012) BMD modeling methods were used to select a best 
fitting model from the multiple models used to fit cohort study data.

➢ Selection of a Benchmark Relative Risk – for this comparative analysis, a 20% relative 
risk dose, or RRE20 is estimated. The 20% effect level was chosen to avoid 
extrapolating far outside the range of data and because, for the bulk of the 
epidemiological data sets, an increase in odds ratio or relative risks of about 20% 
was near the smallest increase that could be resolved based on the data. 

➢ Categorizing Outcomes – To facilitate comparing across RREs, outcomes categorized 
by types (clinical–fatal, clinical–non fatal, preclinical, subclinical) and subcategories 
(e.g., fetal loss, infant mortality and stillbirths for pregnancy outcomes).

➢ Final screening of studies led to the identification of 262 datasets within 68 studies.

➢ The figure shows individual and median preclinical/subclinical, clinical nonfatal and 
clinical fatal RRB results organized by most to least number of datasets.

➢ Table 3 presents RRB ranges, means and medians for each health outcome.

Conclusions

As indicated in Poster 1, all of the outcomes in this RRB analysis, as well as 
neurocognitive effects for which RRB values could not be derived, were identified as 
having Robust or Moderate evidence overall and will therefore be considered for dose-
response analysis. However, NRC (2013) identified priority health outcomes for EPA to 
focus on and recommended that EPA further prioritize. EPA’s RRB analysis approach 
supports this prioritization effort by providing a method for comparing the results of 
diverse studies of health outcomes, and identifying key endpoints and datasets that are 
suitable for use in more detailed dose-response analyses (see Posters 5, 6, and 7). 
Consistent with key outcomes identified by the NRC (NRC, 2013), DCS, bladder cancer 
and lung cancer were identified as having the largest databases of adequate dose-
response datasets, increasing confidence in the RRB summary statistics (e.g., median 
estimates), as well as low RRB values relative to most outcomes. RRB values for 
diabetes and liver cancer data are also low, but are associated with smaller databases 
and a lower degree of certainty in the RRB summary statistics. 
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Table 1. Study Rating Criteria for Dose-Response Analysis

Rating Element Criteria

Health outcome Incidence data generally preferred over mortality data only

Exposure ascertainment method Location of residence/exposure or large group averages instead of individual measurement or small group averages

Exposure reporting Reported as ranges without summary statistics such as averages and measures of dispersion/variance

Estimates control for smoking, gender, age and 

other key covariates

Adjusted estimates do not include important covariates

Number of exposure groups Less than two in addition to referent precludes exposure-response modeling, more groups support more complex 

models

Number of subjects & cases reported One or both elements missing; only statistical summaries (RR, SMRs, etc.,) are reported

Exposure/dose metric Worst = historical exposure measurement only, better = cumulative exposure, best = cumulative intake (no mark-

down for urinary As)

Exposure timing and duration Exposure histories (timing, duration) not adequately ascertained or reported

Representativeness of referent group/controls Not documented or differs from exposed groups, without reported adjustment (case-control only)

Sufficient number of subjects, cases Too few cases to conduct reliable statistical analyses (most applicable to cohort cancer studies, desirable to have 

>~ 5 cases/exposure group

Table 2. U.S. Background Estimates for Use in RRB Derivation

Exposure metric Units

U.S.  central 

tendency Basis for U.S. estimate

Drinking water 

concentration

μg /L 1.5 median, 95th percentile county mean As in drinking water (USGS, 

2011)

Cumulative exposure from 

drinking water

μg - yr/L 75 1.5 μg/L or 15.4 μg/L (above) × 50 yrs

Daily intake μg /day (water) 1.5 1.5 μg/L or 15.4 μg/L (above) × 1.0 L/day (U.S. EPA, 2011)

Dietary intake μg /day (food) 3.5 0.05 μg/kg-d mean or 0.19 μg/kg-d 95th percentile adult intake (Xue

et al., 2010) × 70-kg adult

μg /day (food + water) 5 Sum of food and water

Cumulative intake mg (cumulative intake, water) 27.4 1.5 μg/day or 15.4 μg/day (above) × 50 yrs

mg (cumulative intake, food + water) 91.3 5 μg/day or 28.7 μg/day (above) × 50 yrs

Urine concentration (cr. Adj.) μg As excretion / g creatinine 7.4 NHANES (2013-2014) median or 95th percentile (CDC, 2016)

Urine concentration μg AS excretion / L urine 5 NHANES (2013-2014) median or 95th percentile (CDC, 2016)

Air μg /m3 0.00075 https://cfpub.epa.gov/roe/indicator.cfm?i=90#8; EPA's ambient 

monitoring archive, arsenic data averaged between 2010 and 2013

Cumulative air μg /m3-years 0.0375 0.00075 μg /m3 or 0.00156 μg /m3 (above) × 50 yrs

** Results reflect datasets of clinical incidence which produced RRE20 (the exposure associated with a 20% increase in 

relative risk) estimate no more than 3-fold below or above the study exposure range.  

RRB is the ratio of the RRE20 to the typical U.S. background exposure.

RRE20 = 
Background

➢ Estimating Group-level Mean Exposures – Exposure ranges were fit to lognormal 
distributions using maximum likelihood (MLE) methods. Group mean estimates were 
derived by drawing large Monte Carlo samples (10 million) from fitted distributions, 
and sampling randomly in each exposure range for appropriate numbers of “subjects.”

➢ Adjusting Incidence to Account for Covariates – “Effective counts” derived from 
reported ORs that were adjusted for covariates (see Poster 1).

➢ Identifying Background Exposure for the U.S. Population – For RRE and RRB 
derivations, relative risk for central tendency background exposures (Table 2) set to 
1.0; thus, the RRE20 is exposure or dose for which the calculated relative risk is 1.2. 
This allows for comparison of U.S.-specific risk results across studies. 
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A model averaging approach was applied in an attempt to extrapolate lifetime bladder 
and lung cancer probabilities observed at µg/kg-day intake doses estimated for a large 
prospective cohort study of residents in northeast Taiwan (Chen et al., 2010a,b) to 
relevant U.S. doses. The approach is illustrated in Figure 1 and builds upon dose-
response model averaging methods developed by the FDA. It involves: 

➢ Estimation of water and dietary intake variability for the Taiwanese population to
represent the variability in the input variables to the bootstrap model. 

➢ Bootstrap simulation to incorporate uncertainty in the estimation of adjusted 
outcomes (cases of cancer) and daily arsenic intake dose.

➢ Model Averaging to extrapolate to U.S. relevant doses and assess model dependence. 

Bootstrap simulation 
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Multiple data sources and methods were used to derive inputs for the bootstrap 
estimation of arsenic intake. In summary:

➢ iAs Drinking water intake was estimated by fitting a mixed lognormal distribution to 
the drinking water concentration data from the Chen et al. cohort. Distributions of 
drinking water consumption were estimated based on age-specific survey data from 
the Taiwan Department of Health (TDOH, 2007). 

➢ iAs food intake was estimated using food consumption from Taiwan Department of 
Health survey data (TDOH, 2007) and iAs concentration distributions (for rice and 
leafy vegetables) or central tendency estimates (tubers, pulses, meats and fish) 
estimated from multiple studies of Taiwanese and other Asian countries. 

➢ A “bootstrap” methodology was applied to simulate the variability in arsenic intake 
and in outcome measures, and their impacts on risk estimates. As shown in Figure 
1, the estimated arsenic intake doses from water and diet were summed for each 
subject in each bootstrap iteration, and average total daily intake doses were 
estimated across each exposure group.  The 1,000 sets of group average arsenic 
intake dose served as inputs, along with the outcome data sets, to the dose-
response estimation.  

➢ In the range of the data, similar mean absolute risk, 2.5th and 97.5th percentiles are 
derived from unconstrained and constrained models (Figures 2 & 3; upper plots). 

➢ At lower doses, absolute risks derived from the unconstrained models curve sharply 
downward compared to those from constrained models (Figures 2 & 3; lower plots).

➢ Differences in extra risk (i.e., the increase in risk relative to estimated “background 
risk”) are more substantial, particularly in the low-dose range (see Figures 4 and 5).  

➢ National Research Council (NRC) recommended that EPA focus on high-quality 
epidemiologic studies that assess inorganic arsenic (iAs) exposures commonly 
experienced in the U.S., where mean background intake is estimated to be 0.071 µg 
iAs/kg-day (see  Posters 6 and 7) and where intake levels above 1 µg iAs/kg-day are 
extremely rare (NRC, 2013). 

➢ An analysis was performed to assess the suitability of two studies of bladder and 
lung cancer risk in a large Taiwanese population (Chen et al., 2010a,b) that:

➢ meet EPA study quality criteria (see Poster 1),

➢ form the basis of arsenic risk assessments performed by other international 
organizations (FDA, 2016; WHO, 2011), and

➢ are associated with high iAs exposure levels relative to the U.S. (iAs intake for the 
reference group of these studies is ~0.9 µg/kg-day, more than 10× higher than 
the estimated U.S. background intake level). 

Results

➢ Nine dose-response models available in EPA’s Benchmark Dose Software (BMDS) 
were fit to each bootstrap data set (Table 1). A diverse set of models was chosen to 
cover “model space” and explore “model uncertainty” as fully as possible. 

➢ Models were estimated by maximizing binomial likelihood with varying constraints.  

➢ Outputs from the bootstrap analysis included 1,000 sets of maximum likelihood 
parameter estimates and model log likelihoods derived for each input data set.  

➢ Bayesian Information Criteria (BIC) values were calculated as:

𝐵𝐼𝐶 = −2 × log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘 × ln(𝑛)

where k = number of parameters estimated and n = number of observations.  

➢ The weights employed in model averaging were based on the calculated average BIC 
values for each model. For each model (i), the Bayes weights were calculated as:

𝑊𝑒𝑖𝑔ℎ𝑡𝑖 =
𝑒(−0.5×𝐵𝐼𝐶𝑖)

σ𝑖=1
9 𝑒(−0.5×𝐵𝐼𝐶𝑖)

➢ “Prior” model weights were assumed to be 1/9 (i.e., no a priori preferred model).

➢ Weibull, log logistic, log probit, Gamma, and dichotomous Hill models were run with 
power or slope terms both unconstrained  and constrained to be >1.0 to better 
assess model dependence in the low dose region. 

➢ Weighted estimates of lifetime bladder and lung cancer probabilities were 
calculated for a series of doses from 0 to 40 µg/kg-day, corresponding to the range 
of mean total arsenic intakes observed in the bootstrap data set.

Conclusions

As reflected in Figures 2 through 5, EPA’s model averaging analysis shows substantial 
model uncertainty in extrapolating from the iAs doses estimated for the Taiwan cohort 
to the estimated U.S. background iAs dose of 0.071 µg/kg-day. This result, combined 
with the NRC (2013) recommendation to perform only “modest” (e.g., 1 order of 
magnitude) extrapolation from the lowest exposure group of a candidate study, 
suggests that the Chen et al. (2010a,b) studies should not serve as the sole basis for 
U.S.-specific cancer risk estimates. As a result, EPA has developed a multiple study 
Bayesian meta-regression approach that has the potential to better inform dose-
response and provide more reliable risk estimates at U.S.-relevant arsenic dose levels 
(see Posters 6 and 7).

Figure 1.  Summary of dose-response methodology for bladder and lung cancer. Note: BIC = 

Bayesian Information Criterion

Model Form Parameters

Quantal linear r(dose) = a + (1−a)× (1−exp(−b× dose)) 2

Logistic r(dose) = 1/(1 + exp(−a−b× dose)) 2

Probit r(dose) = pnorm(a + b× dose) 2

Weibull r(dose) = a + (1−a)× (1−exp(−c× dose^b)) 3

Multistage 2 r(dose) = a + (1−a)× (1−exp(−b× dose−c× dose^2)) 3

Log logistic r(dose) = a + (1−a)/(1+exp(−c−b× log(dose))) 3

Log probit r(dose) = a + (1−a)× pnorm(c + b× log(dose)) 3

Gamma r(dose) = a + (1−a)× pgamma(c× dose^b) 3

Dichotomous Hill r(dose) = v× g + (v−v× g)/(1 + exp(−c−b× log(dose))) 4

Table 1.  Models included in the dose-response assessment

Figure 3.  Predicted lifetime probability of lung cancer versus all doses 
(upper plot) and low doses (lower plot) using constrained (C) and 
unconstrained (U) models compared to adjusted observed incidence 
obtained from adjusted relative risks reported in (Chen et al., 2010a).

Figure 2.  Predicted lifetime probability of bladder cancer versus all 
doses (upper plot) and low doses (lower plot) using constrained (C) 
and unconstrained (U) models compared to adjusted observed 
incidence from adjusted relative risks reported in Chen et al. (2010b).

Figure 5.  Predicted low dose extra risk of lung cancer from Chen et al. 
(2010a) using constrained and unconstrained model averaging.

Figure 4.  Predicted low dose extra risk of bladder cancer from Chen 
et al. (2010b) for constrained and unconstrained model averaging.

http://dx.doi.org/10.1016/j.envres.2009.08.010
http://dx.doi.org/10.1158/1055-9965.EPI-09-0333
http://dx.doi.org/10.1093/aje/153.5.411
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http://whqlibdoc.who.int/publications/2011/9789241660631_eng.pdf
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The pre-analysis steps described here employ methods to: 

➢ address how doses are commonly reported in epidemiological studies

➢ calculate a common dose metric across all epidemiological studies

➢ calculate “effective counts” from reported effect measures in human studies to 
provide counts used in subsequent dose-response analyses to account for 
confounders. (see section on “Calculating Effective Counts”)

Dose Conversions and Uncertainty
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➢ For dose-response analysis, a point estimate of dose is needed for each dose group, 
but epidemiologic data is often interval censored with an open ended reported for 
the high dose group (e.g., > 10,000 μg/L-yrs, Table 1)

➢ We assumed a log-normal distribution for exposures in the population of interest 
and calculated μ and σ as the log-scale mean and standard deviation using 
likelihood maximization.

➢ Given μ and σ, the mean within a exposure interval (cg, cg+1) is given by: 

𝑚𝑒𝑎𝑛 𝑔 = 𝑒
𝜇+

𝜎2

2 ×
𝜃 𝑈1 𝑔 −𝜎 −𝜃 𝑈0 𝑔 −𝜎

𝜃 𝑈1 𝑔 −𝜃 𝑈0 𝑔
, 

➢ where 𝑈1 𝑔 =
𝑙𝑛(𝑐𝑔+1)−𝜇

𝜎
, 𝑈0 𝑔 =

𝑙𝑛(𝑐𝑔)−𝜇

𝜎
, and 𝜃() is the  cumulative 

distribution function for the standard normal distribution 

➢ Group-specific means computed via this equation are used as the “MLE” doses

➢ “High-end” and “low-end” doses were also estimated maximizing or minimizing 
the mean values for the highest exposure group

➢ These “high-end” and “low-end” estimates correspond to a chi-squared-based 
95% confidence interval around the maximum likelihood (MLE) estimate for the 
highest exposure group

➢ For meta-analysis, it is imperative that all studies are expressed using a common 
dose metric, but iAs studies often report exposures in drinking water 
concentrations (µg/L), cumulative exposure (µg/kg-year), etc.  

➢ For this analysis, we converted all reported studies into iAs daily intake values 
(µg/kg-day).

➢ For example, for a study that reports average iAs exposure (µg/L) or cumulative iAs 
exposure (µg/L-yr), daily intake (µg/kg-day) was calculated via:

𝑑𝑜𝑠𝑒 = 𝐷𝐼 + 𝑓 × 𝑊𝐶𝑅 ×𝑊𝐸 + 1 − 𝑓 × 𝑊𝐶𝑅 × 𝐿𝐸

➢ Where DI = dietary intake (µg/kg), f = fraction of lifetime exposed to the study 
reported iAs levels (WE), WCR = water consumption rate (L/kg), WE = arsenic 
exposure level (µg/L; if exposure is given in terms of cumulative exposure [CE], 
WE is estimated by dividing CE by the reported duration of exposure [RDWE]), 
and LE = low exposure value (µg/L).

➢ Parameters necessary for conversion determined on a study-by-study basis, 
according to study population.

➢ Factors for conversion were not treated as single values – a distribution of values 
was assumed over the individuals in the study to address interindividual variability 
and dose-group values were then averaged. Table 2 illustrates how this was done 
for one dose group.

➢ After averaging over all individuals within a dose-group, a Monte Carlo simulation 
was run with 1,000 iterations to derive a distribution of group-specific dose values.

➢ The median, 2.5th, and 97.5th percentiles from this distribution were used 
characterize the “best”, “low-end”, and “high-end” estimates of dose (Table 3).

➢ For both cohort and case-control studies, published manuscripts almost always 
report relative risks (RR) or odds ratios (OR) that have been adjusted for some set of 
confounders

➢ The Bayesian dose-response meta-regression method described here is based on the 
likelihood of observing a particular number of cases

➢ The goal of computing “effective” counts of cases and controls is to construct of set of 
counts that reflect only the effect of exposure to iAs (Table 1)

➢ Essentially, the calculation results in counts of cases and controls that would have 
been calculated had all the covariates (other than dose) in all groups been the same 
as those observed in the referent group

➢ The methods employed to calculate these “effective counts” are based on those of 
Greenland and Longnecker (1992), Hamling et al. (2008), and Orsini et al. (2012)

➢ Studies included in the subsequent Bayesian dose-response meta-regression 
included incidence rate cohort, cumulative incidence cohort, and case-control studies

➢ National Research Council (NRC) has recommended the application of meta-
analytical approaches, including Bayesian approaches, to well-studied health 
outcomes for the development of point estimates of risk and confidence intervals 
(NRC, 2013; NRC, 2014).

➢ NRC specifically recommended that EPA conduct dose-response meta-analysis for 
arsenic-related diseases in the IRIS assessment of inorganic arsenic (NRC, 2013).

➢ This poster is the first of two (see also Poster 7) that describe a case study 
highlighting an application of Bayesian hierarchical dose-response meta-regression 
to the analysis of arsenic exposure and  human bladder cancer.

Conclusions

➢ The methods described herein were used to 
account for commonly encountered limitations 
in epidemiological studies in the context of 
dose-response analyses, including:

➢ Reporting of interval-censored exposure 
groups

➢ Use of divergent measures of iAs exposure 
across studies

➢ And only reporting adjusted effect measures

➢ With respect to 
calculation of 
doses for use in a 
meta-regression, 
the current 
method calculates 
multiple exposure 
metrics and 
facilitates 
sensitivity

➢ analyses to investigate the degree of 
uncertainty in dose that exist across studies 
used in the analysis (Figure 1) (full set of 
sensitivity analyses discussed in Poster 7).

Figure 1: dose pre-analysis and 
uncertainty flowchart  in relation to “best”, 
“low-end”, and “high-end” dose sets; 1 See 
Group Means and Uncertainty section
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The dose-response and target population prediction steps described here employ 
methods to: 

➢ Apply a flexible logistic model to cohort and case-control epidemiological studies of 
inorganic arsenic (iAs) in a hierarchical Bayesian framework to estimate study-
specific and pooled slopes

➢ Extrapolate predictions of risk to a target population of interest using lifetable 
methods

➢ This method explicitly uses as inputs the results of the pre-analysis steps described 
in Poster 6.
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➢ The purpose the dose-response analysis described herein is to perform a meta-
regression to combine multiple studies for two kinds of epidemiological studies: 
case-control and cohort studies

➢ We assume that the prospective likelihood is given by a logistic equation applied to a 

vector of p explanatory variables 𝑋 = 𝑋1, … , 𝑋𝑝 :

𝑙𝑜𝑔𝑖𝑡 Pr(𝐷 = 1|𝑋) = 𝛼∗ + 𝛽𝑇𝑠(𝑋)

➢ Due to the differing designs of case-control and cohort studies, methods were 
developed for each study type independently in order to predict the prospective 
likelihood of each study

➢ For the Bayesian implementation of the meta-regression: 

➢ All analyses were conducted in the Stan programming language

➢ Defined necessary parameters for modeling and set priors:

➢ Case-control studies: β (slope parameter) and λ (true proportion of doses in a 
dose-interval)

➢ Cohort studies: μ(δ) (expected number of cases in the referent group)

➢ Calculated the parameter α or α* 

➢ Defined the log-likelihood contribution for each dose group

➢ Typical lifetable analysis methods, including consideration of background exposure 
to iAs, were used to estimate extra risk of disease in the target population:

➢ Background rates of disease assumed to represent zero extra risk from iAs

➢ A mean background iAs dose of 0.071 µg/kg-day was assumed (0.05 µg/kg-day 
from dietary sources, 0.021 µg/kg-day from drinking water, and 0 µg/kg-day 
from inhalation) (Xue et al., 2010; Mendez et al., 2017).

➢ Table 1 summarizes the data used in the case study of iAs and bladder cancer, 
including the estimated intake values and effective counts calculated as described in 
the Poster 6 

➢ The sensitivity of the hierarchical model and its outputs were examined regarding 
four sources of uncertainty:

➢ Characterization of exposure levels used in the modeling: this was addressed 
using the “high” and “low” dose estimates discussed in Poster 6; using different 
estimates of dose did not result in pooled β_mean that differed greatly (0.19, 0.20, 
or 0.21)

➢ Choice of datasets: a leave-one-out analysis was performed which showed that no 
one study had a disproportionately large influence on the final pooled β_mean 
value (Table 5)

Conclusions

➢ These Bayesian meta-regression methods (Posters 6 and 7) allow for inclusion of 
more studies than other meta-regression methods by  reconciling different study 
designs and exposure metrics, and could potentially be applied to any endpoint for 
which multiple studies and incidence/mortality/morbidity lifetables are available

➢ The logistic dose-response model used could be extended to consider fractional-

polynomial forms of the logistic model, 𝑙𝑜𝑔𝑖𝑡 𝑝 𝑥 = 𝑎∗ + 𝛽_1 𝑥𝑝1 + 𝛽_2 𝑥𝑝2 ,

to allow more flexibility in fitting datasets for the investigation of whether the data 
suggest a J-shaped dose-response (e.g., negative slopes in the low dose region)

Dose-Response Modeling and Lifetable Analysis

➢ For the purpose of dose-response 
modeling, the α* parameter was 
assumed to be independent for 
each dataset

➢ Methods also assume study-
specific β values that are 
normally distributed around a 
mean = β_mean, with standard 
deviation = β_sigma.  Both 
β_mean and β_sigma were 
assigned priors and updated 
(Table 2)

➢ The gamma distribution for β_mean reflects determination that iAs is causally 
associated with the development of bladder cancer

➢ prior judgement that exposure to 1 µg/kg-day iAs (~14-fold average background 
exposure) is highly likely to result in 1.0001 < OR < 20.

➢ 1st and 99th percentiles of gamma distribution (𝑓(𝑥) = 𝛼𝑒−𝛼𝑥(𝛼𝑥)𝑏−1 / 𝛤(𝑏)) 
set equal to ln(1.0001) and ln(20), results in parameters listed in Table 2

➢ Important to note that gamma distribution gives greatest weight to values of x 
closest to zero (hence, prior assumption is weaker association with iAs unless 
data are sufficient to override prior)

➢ Estimates of pooled and study-specific β values derived from the hierarchical model 
and estimated lifetime extra risks in the target population are summarized in Tables 
3 and 4 and Figures 1-3.

➢ Zero background inhalation 
assumption: assuming background 
inhalation exposures of 0.2 to 0.6 
µg/day decreased mean extra risk 
estimates from 4.88×10-4  µg/kg-
day (Table 5, no data set excluded) 
to 4.68 or 4.51 × 10-4 µg/kg-day

➢ The consideration of alternative gamma prior distributions for β_mean: 
alternative distributions that considered different 1st or 99th percentile values did 
not overly influence final risk estimates (Table 6)

➢ National Research Council (NRC) has recommended the application of meta-
analytical approaches, including Bayesian approaches, to well-studied health 
outcomes for the development of point estimates of risk and confidence intervals 
(NRC, 2013; NRC, 2014).

➢ NRC specifically recommended that EPA conduct dose-response meta-analysis for 
arsenic-related diseases in the IRIS assessment of inorganic arsenic (NRC, 2013).

➢ This poster is the second of two (see also Poster 6) that describe a case study 
highlighting an application of Bayesian hierarchical dose-response meta-regression 
to the analysis of arsenic exposure and  human bladder cancer.
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