Nanoscale Silver

Project ID

1457

Category

Other

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  This report consists of charts of toxic pollutants with the recommended water quality criteria listed for such things as freshwater, saltwater, human consumption, etc.

Technical Report

Abstract  The report was a result of an effort by experts from government, industry and the public interest community to examine the path of a number of hypothetical nanotechnology food packaging applications through the current regulatory system. The regulatory system for food packaging is scientifically rigorous and extraordinarily complex, both legally and scientifically. This first-of-its-kind analysis provides a better understanding of the potential regulatory issues on the horizon for nanotechnology-enabled packaging – an advantage for industry, consumers and regulatory agencies such as FDA and the Environmental Protection Agency (EPA).

Journal Article

Abstract  Exposure assessment is crucial for risk assessment for nanomaterials. We propose a framework to aid exposure assessment in consumer products. We determined the location of the nanomaterials and the chemical identify of the 580 products listed in the inventory maintained by the Woodrow Wilson International Center for Scholars, of which 37% used nanoparticles suspended in liquids, whereas <1% contained "free airborne nanoparticles". C(60) is currently only used as suspended nanoparticles in liquids and nanosilver is used more as surface bound nanoparticles than as particles suspended in liquids. Based on the location of the nanostructure we were able to further group the products into categories of: (1) expected, (2) possible, and (3) no expected exposure. Most products fall into the category of expected exposure, but we were not able to complete a quantitative exposure assessment mainly due to the lack of information on the concentration of the nanomaterial in the products--a problem that regulators and industry will have to address if we are to have realistic exposure assessment in the future. To illustrate the workability of our procedure, we applied it to four product scenarios using the best estimates available and/or worst-case assumptions. Using the best estimates available and/or worst-case assumptions we estimated the consumer exposure to be 26, 15, and 44 microg kg(-1) bw year(-1) for a facial lotion, a fluid product, and a spray product containing nanoparticles, respectively. The application of sun lotion containing 2% nanoparticles result in an exposure of 56.7 mg kg(-1) bw d(-1) for a 2-year-old child, if the amounts applied correspond to the European Commission recommendations on use of sunscreen.

Journal Article

Abstract  There is an emerging literature reporting toxic effects of manufactured nanomaterials (NMs) and nanoparticles (NPs) in fish, but the mechanistic basis of both exposure and effect are poorly understood. This paper critically evaluates some of the founding assumptions in fish toxicology, and likely mechanisms of absorption, distribution, metabolism and excretion (ADME) of NPs in fish compared to other chemicals. Then, using a case study approach, the paper compares these assumptions for two different NPs; TiO2 and C60 fullerenes. Adsorption of NPs onto the gill surface will involve similar processes in the gill microenvironment and mucus layer to other substances, but the uptake mechanisms for NPs by epithelial cells are more likely to occur via vesicular processes (e.g., endocytosis) than uptake on membrane transporters or by diffusion through the cell membranes. Target organs may include the gills, gut, liver and sometimes the brain. Information on metabolism and excretion of NPs in fish is limited; but hepatic excretion into the bile seems a more likely mechanism, rather than mainly by renal or branchial excretion. TiO2 and C60 share some common chemical properties that appear to be associated with some similar toxic effects, but there are also differences, that highlight the notion that chemical reactivity can inform toxic effect of NPs in a fundamentally similar way to other chemicals. In this paper we identify many knowledge gaps including the lack of field observations on fish and other wildlife species for exposure and effects of manufactured NMs. Systematic studies of the abiotic factors that influence bioavailability, and investigation of the cell biology that informs on the mechanisms of metabolism and excretion of NMs, will greatly advance our understanding of the potential for adverse effects. There are also opportunities to apply existing tools and techniques to fundamental studies of fish toxicology with NPs, such as perfused organs and fish cell culture systems.

Journal Article

Abstract  Manufacturers of clothing articles employ nanosilver (n-Ag) as an antimicrobial agent, but the environmental impacts of n-Ag release from commercial products are unknown. The quantity and form of the nanomaterials released from consumer products should be determined to assess the environmental risks of nanotechnology. This paper investigates silver released from commercial clothing (socks) into water, and its fate in wastewater treatment plants (WWTPs). Six types of socks contained up to a maximum of 1360 µg-Ag/g-sock and leached as much as 650 µg of silver in 500 mL of distilled water. Microscopy conducted on sock material and wash water revealed the presence of silver particles from 10 to 500 nm in diameter. Physical separation and ion selective electrode (ISE) analyses suggest that both colloidal and ionic silver leach from the socks. Variable leaching rates among sock types suggests that the sock manufacturing process may control the release of silver. The adsorption of the leached silver to WWTP biomass was used to develop a model which predicts that a typical wastewater treatment facility could treat a high concentration of influent silver. However, the high silver concentration may limit the disposal of the biosolids as agricultural fertilizer.

Journal Article

Abstract  Environmental toxicologists, chemists and social scientists have identified three priorities for research into the impact of engineered nanoparticles on the environment.

Journal Article

Abstract  It is inevitable that, during their use, engineered nanoparticles will be released into soils and waters. There is therefore increasing concern over the potential impacts of engineered nanoparticles in the environment on aquatic and terrestrial organisms and on human health. Once released into the environment, engineered nanoparticles will aggregate to some degree; they might also associate with suspended solids, sediment, be accumulated by organisms and enter drinking water sources and food materials. These fate processes are dependent on the characteristics of the particle and the characteristics of the environmental system. A range of ecotoxicological effects have also been reported, including effects on microbes, plants, invertebrates and fish. Although available data indicate that current risks of engineered nanoparticles in the environment to environmental and human health are probably low, our knowledge of the potential impacts of engineered nanoparticles in the environment on human health is still limited. There is therefore a need for continued work to develop an understanding of the exposure levels for engineered nanoparticles in environmental systems and to begin to explore the implications of these levels in terms of the ecosystem and human health. This will require research in a range of areas, including detection and characterization, environmental fate and transport, ecotoxicology and toxicology.

Journal Article

Abstract  To investigate the effect of pH on nanoparticle aggregation and transport in porous media, we quantified nanoparticle transport in two-dimensional structures. Titania was used as a model compound to explore the effects of surface potential on particle mobility in the subsurface. Results show that pH, and therefore, surface potential and aggregate size, dominate nanoparticle interactions with each other and surfaces. In each solution, nanoparticle aggregate size distributions were bimodal or trimodal, and aggregate sizes increased as the pH approached the pH of the point of zero charge (pHzpc). Over 80% of suspended particles and aggregates were mobile over the pH range of 1-12, except close to the pHzpc of the surfaces, where the particles are highly aggregated. The effect of pH on transport is not symmetric around the pHzpc of the particles due to charging of the channel surfaces. However, transport speed of nanoparticle aggregates did not vary with pH. The surface element integration technique, which takes into account the effect of curvature of particles on interaction energy, was used to evaluate the ability of theory to predict nanoparticle transport.

DOI
Journal Article

Abstract  This paper describes the issues relating to the measurement of nanoparticle size, shape and dispersion when evaluating the toxicity of nanoparticles. Complete characterization of these materials includes much more than size, size distribution and shape; nonetheless, these attributes are usually the essential foundation. The measurement of particle size, particularly at scales of 100 nm or less, can be challenging under the best of conditions. Measurements that are routine in the laboratory setting become even more difficult when made under the physiological conditions relevant to toxicity studies, where the environment of the particles can be quite complex. Passive and active cellular responses, as well as the presence of a variety of nano-scale biological structures, often complicate the collection and interpretation of size and shape data. In this paper, we highlight several of the common issues faced when characterizing nanoparticles for toxicity testing and suggest general protocols to address these problems.

Journal Article

Abstract  Background: Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. Methods: To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 μg/m3) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. Results: After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-α mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. Conclusions: We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans.

Journal Article

Abstract  Nanotechnology may yield a plethora of beneficial applications, but it can also be expected to present risks. The challenge is to anticipate and reduce environmental and health risks or, at a minimum, identify and deal with such threats once they begin to become evident. Past experience, particularly with the fuel additive MTBE(methyl tertiary butyl ether), provides valuable guidance on how to assess the potential risks of nanotechnology using a comprehensive environmental assessment approach, which combines a product life-cycle perspective with the risk assessment paradigm. This systematic approach can serve not only to guide the development of a research strategy for assessing the risks of nanotechnology but possibly even help avert unintended consequences of nanotechnology.

Journal Article

Abstract  Nanosilver has well-known antibacterial properties, and is widely used in daily life as various medical and general products. In comparison with silver ion, there is serious lacking of information concerning the biological effects of nanoAg. In this study, we observed the cytotoxic effect of nanoAg in HeLa cells. The nanoAg-induced cytotoxicity was lower than that of AgNO3, used as a silver ion source. Apoptosis evaluated by flowcytometric analysis was associated with this cell death. Further, the expressions of ho-1 and mt-2A, well-known oxidative stress-related genes, were up-regulated by nanoAg treatment. Our results showed that nanoAg possesses the potential for cytotoxicity, therefore, in the case of exposure at high concentrations, we should consider to protect from nanoAg-induced toxicity.

Journal Article

Abstract  We examined the influence of speciation on the kinetics of silver uptake and depuration in the gills of two freshwater fish, the rainbow trout (Oncorhynchus mykiss) which has high branchial Na+ and Cl− uptake rates and is relatively sensitive to silver, and the European eel (Anguilla anguilla, yellow stage) which has low ion uptake rates and is relatively resistant to silver. Fish previously acclimated to the appropriate chloride level were exposed to 110mAgNO3 (1.3 μg l−1, sublethal) for 24 h in synthetic softwater with either low (10 μM) or high (1200 μM) chloride concentration, and then followed over a subsequent 67-day post-exposure period in silver-free water of the same chloride content. The exposures were therefore mainly to the free ion, Ag+ in the low chloride water versus mainly to the neutral aqueous complex, AgClaq in the high chloride water. In trout, but not in eel, water chloride is known to protect against physiological disturbances and toxicity caused by Ag+. In both fish species, at both chloride levels, silver uptake exhibited complex kinetics. Gill silver loading occurred slowly until 6 h, then rose greatly to a peak at 12 h, followed by significant net depuration thereafter during continued exposure. By 24 h, net gill loading was three- to fivefold greater from AgClaq than from Ag+ exposure in both species, and threefold greater in trout than in eel under both conditions, with trout holding a lower fraction of the whole body burden in their gills. During the post-exposure period, depuration of silver from the gills occurred rapidly in trout, but very slowly in eel, such that gill silver burdens were greater in eel throughout the 67-day period on both an absolute and relative basis (e.g. 35% of whole body burden in eel versus <3% in trout at day 8). The kinetics of depuration were described by two phase exponential models, with break points between the fast and slow phases at 1 and 15 days for trout and eel, respectively. We conclude that speciation affects not only uptake rates but also the kinetics of depuration. When silver is loaded from AgClaq it is clearly more labile than from Ag+ exposures, with 1.6–1.8-fold greater loss rates during the fast phases in both species. Differences in branchial silver uptake between eel and trout correlate well with differences in acute toxicity, but are not as large as differences in ion uptake rates. The complex time-dependent patterns of gill loading, and the higher loading from AgClaq than from Ag+, mean that gill total silver burden is not an appropriate endpoint for biotic ligand modelling.

Technical Report

Abstract  This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA?s research strategy to support nanomaterial risk assessments.

Journal Article

Abstract  1. Isolated, non-identified neurons were voltage clamped using the internal perfusion technique. 2. Ions of Ag+ (1-100-mu-M) introduced into the bathing solution activated a steady-state inward current (I(Ag)) in the soma. The effect of Ag+ was reversible when the concentration of Ag+ was less than 75-mu-M or the time of alication was shorter than 10 min. 3. I(Ag) was observed both in the presence and absence of Na+ ions in the extracellular saline. It could also be activated when Cs+ ions were substituted for Na+ ions. 4. The current-voltage characteristics were linear in the voltage range - 100 to 0 mV. The revrsal potential in control saline was an average of 1.19 +/- 5.1 mV. 5. The application of Ag+ ions induces an elevation of intracellular free Ca2+ concentration by 10-20 times in both Ca2+-containing and Ca2+-free extracellular salines, as revealed by Fura-2 measurements. 6. Agents that increase the intracellular free Ca2+ concentration ([Ca2+]i), like thymol, caffeine and dinitrophenol, increased the amplitude of I(Ag). The effect was additive. Ruthenium Red, which blocks the release of Ca2+ from intracellular stores, decreased the Ag+ effect. 7. It is concluded that extracellularly applied Ag+ ions increase the cytoplasmic free Ca2+ concentration, which in turn activates non-specific cationic channels. 8. Ag+ ions in 1-10-mu-M concentration were able to decrease the voltage-activated Ca2+ current amplitude. This decrease, however, was due to the increase of [Ca2+]i which caused Ca2+-dependent inactivation.

DOI
Journal Article

Abstract  A novel biological method for the synthesis of silver nanoparticles using the fungus Verticillium is reported. Exposure of the fungal biomass to aqueous Ag+ ions resulted in the intracellular reduction of the metal ions and formation of silver nanoparticles of dimensions 25 ± 12 nm. Electron microscopy analysis of thin sections of the fungal cells indicated that the silver particles were formed below the cell wall surface, possibly due to reduction of the metal ions by enzymes present in the cell wall membrane. The metal ions were not toxic to the fungal cells and the cells continued to multiply after biosynthesis of the silver nanoparticles.

DOI
Journal Article

Abstract  A key element of any nanomaterial toxicity screening strategy is a detailed and comprehensive physicochemical characterization of the test material being studied. This is a critical factor for correlating the nanoparticle surface characteristics with any measured biological/toxicological responses, as well as to provide an adequate reference point for comparing toxicity results with the hazard-based findings of other investigators. Moreover, when hazard or risk-based evaluations are made on a particular nanomaterial (based on a variety of studies), it is important to ensure that the nanoparticle-types are identical or very similar in composition. This can only be accomplished if rigorous characterization is conducted. In the absence of an adequate assessment of the physical characteristics, it is easy to draw general conclusions on nanoparticle-types which may have similar chemical compositions but, in fact, have different sizes, shapes, crystal structures, surface coatings, and surface reactivity characteristics. The determination of nanomaterial physicochemical properties is vitally important to nanomedicinal applications in that the fate, accumulation, and transport of nanomaterials through the body over time may be predicted based on specific surface characteristics.

Journal Article

Abstract  The cardiovascular system is currently considered a target for particulate matter, especially for ultrafine particles. In addition to autonomic or cytokine mediated effects, the direct interaction of inhaled materials with the target tissue must be examined to understand the underlying mechanisms. In the first approach, pulmonary and systemic distribution of inhaled ultrafine elemental silver (EAg) particles was investigated on the basis of morphology and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Rats were exposed for 6 hr at a concentration of 133 Ág EAg m3 (3 * 106 cm3, 15 nm modal diameter) and were sacrificed on days 0, 1, 4, and 7. ICP-MS analysis showed that 1.7 Ág Ag was found in the lungs immediately after the end of exposure. Amounts of Ag in the lungs decreased rapidly with time, and by day 7 only 4% of the initial burden remained. In the blood, significant amounts of Ag were detected on day 0 and thereafter decreased rapidly. In the liver, kidney, spleen, brain, and heart, low concentrations of Ag were observed. Nasal cavities, especially the posterior portion, and lung-associated lymph nodes showed relatively high concentrations of Ag. For comparison, rats received by intratracheal instillation either 150 ÁL aqueous solution of 7 Ág silver nitrate (AgNO3) (4.4 Ág Ag) or 150 ÁL aqueous suspension of 50 Ág agglomerated ultrafine EAg particles. A portion of the agglomerates remained undissolved in the alveolar macrophages and in the septum for at least 7 days. In contrast, rapid clearance of instilled water-soluble AgNO3 from the lung was observed. These findings show that although instilled agglomerates of ultrafine EAg particles were retained in the lung, Ag was rapidly cleared from the lung after inhalation of ultrafine EAg particles, as well as after instillation of AgNO3, and entered systemic pathways.

Technical Report

Abstract  Algal bioassays for heavy metals can detect low levels in the environment, for example, 0.01 ppm for silver. Algae respond to increasing levels of heavy metals such as copper, nickel, mercury, silver, or cadmium by reduction of growth rate. Occasionally, the response to nontoxic metals is an increase in growth rate. At very low concentrations some potentially toxic metals may be necessary micronutrients. Algal species differ quite markedly in their sensitivity to heavy metals. Combined effects of two or more metals at toxic concentrations may be synergistic (for example, copper-nickel) or antagonistic (for example, cadmium-selenium). The critical concentrations for toxicity of a particular metal may be different at different times during the growth of an algal culture, as well as being dependent upon other chemical and physical conditions. Algal cells appear to markedly concentrate metals from solution, even at concentrations of these metals in the medium which do not apparently inhibit cell division. Bioassays provide the only direct method for assessing the biological availability of metals in solution. Algae isolated from metal-polluted lakes appear to have evolved specific metal tolerances. These "tolerant" algae actually accumulate more of the metals concerned than do their "nontolerant" relatives. Correlations between fish toxicity tests and algal bioassays may allow the relatively expensive fish testing schemes to be replaced by simple and cheaper algal bioassays.

  • <<
  • 1 of 17
  • >>
Filter Results