Nanoscale Silver

Project ID

1457

Category

Other

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  This report consists of charts of toxic pollutants with the recommended water quality criteria listed for such things as freshwater, saltwater, human consumption, etc.

Journal Article

Abstract  Silver nanoparticles (AgNPs) are gaining attention from the academic and regulatory communities, not only because of their antimicrobial effects and subsequent product applications, but also because of their potential health and environmental risks. Whereas AgNPs in the aqueous phase are under intensive study, those in the atmosphere have been largely overlooked, although it is well established that inhalation of nanoparticles is associated with adverse health effects. This review summarizes the present state of knowledge concerning airborne AgNPs to shed light on the possible environmental exposure scenarios that may accompany the production and popularization of silver nanotechnology consumer products. The current understanding of the toxicity of AgNPs points toward a potential threat via the inhalation exposure route. Nanoparticle size, chemical composition, crystal structure, surface area, and the rate of silver ion release are expected to be important variables in determining toxicity. Possible routes of aerosolization of AgNPs from the production, use, and disposal of existing consumer products are presented. It is estimated that approximately 14% of silver nanotechnology products that have been inventoried could potentially release silver particles into the air during use, whether through spraying, dry powder dispersion, or other methods. In laboratory and industrial settings, six methods of aerosolization have been used to produce airborne AgNPs: spray atomization, liquid-flame spray, thermal evaporation-condensation, chemical vaporization, dry powder dispersion, and manual handling. Fundamental uncertainties remain about the fate of AgNPs in the environment, their short- and long-term health effects, and the specific physical and chemical properties of airborne particles that are responsible for health effects. Thus, to better understand the risks associated with silver nanotechnology, it is vital to understand the conditions under which AgNPs could become airborne.

DOI
Journal Article

Abstract  This paper describes the issues relating to the measurement of nanoparticle size, shape and dispersion when evaluating the toxicity of nanoparticles. Complete characterization of these materials includes much more than size, size distribution and shape; nonetheless, these attributes are usually the essential foundation. The measurement of particle size, particularly at scales of 100 nm or less, can be challenging under the best of conditions. Measurements that are routine in the laboratory setting become even more difficult when made under the physiological conditions relevant to toxicity studies, where the environment of the particles can be quite complex. Passive and active cellular responses, as well as the presence of a variety of nano-scale biological structures, often complicate the collection and interpretation of size and shape data. In this paper, we highlight several of the common issues faced when characterizing nanoparticles for toxicity testing and suggest general protocols to address these problems.

Technical Report

Abstract  This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA?s research strategy to support nanomaterial risk assessments.

DOI
Journal Article

Abstract  A key element of any nanomaterial toxicity screening strategy is a detailed and comprehensive physicochemical characterization of the test material being studied. This is a critical factor for correlating the nanoparticle surface characteristics with any measured biological/toxicological responses, as well as to provide an adequate reference point for comparing toxicity results with the hazard-based findings of other investigators. Moreover, when hazard or risk-based evaluations are made on a particular nanomaterial (based on a variety of studies), it is important to ensure that the nanoparticle-types are identical or very similar in composition. This can only be accomplished if rigorous characterization is conducted. In the absence of an adequate assessment of the physical characteristics, it is easy to draw general conclusions on nanoparticle-types which may have similar chemical compositions but, in fact, have different sizes, shapes, crystal structures, surface coatings, and surface reactivity characteristics. The determination of nanomaterial physicochemical properties is vitally important to nanomedicinal applications in that the fate, accumulation, and transport of nanomaterials through the body over time may be predicted based on specific surface characteristics.

DOI
Journal Article

Abstract  The alarming increase of argyrosis leaves little doubt as to our purpose in this report. There has been an accumulation of indubitable clinical evidence which makes it imperative to present before those who prescribe, dispense or use these drugs the danger entailed therein. It must be emphasized that within the past year, following intranasal applications with Argyrol and Neo-Silvol in fifteen children under 10 years of age, an argyrosis developed. Ten of these fifteen children were girls. All these children will present throughout their lives a conspicuous and permanent bluish or slate-gray discoloration that will select them as objects of whispered comments by friends and strangers. At present there is no treatment for argyria.

DOI
Journal Article

Abstract  The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5–6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

Journal Article

Abstract  Nanosilver is one nanomaterial that is currently under a lot of scrutiny. Much of the discussion is based on the assumption that nanosilver is something new that has not been seen until recently and that the advances in nanotechnology opened completely new application areas for silver. However, we show in this analysis that nanosilver in the form of colloidal silver has been used for more than 100 years and has been registered as a biocidal material in the United States since 1954. Fifty-three percent of the EPA-registered biocidal silver products likely contain nanosilver. Most of these nanosilver applications are silver-impregnated water filters, algicides, and antimicrobial additives that do not claim to contain nanoparticles. Many human health standards for silver are based on an analysis of argyria occurrence (discoloration of the skin, a cosmetic condition) from the 1930s and include studies that considered nanosilver materials. The environmental standards on the other hand are based on ionic silver and may need to be re-evaluated based on recent findings that most silver in the environment, regardless of the original silver form, is present in the form of small clusters or nanoparticles. The implications of this analysis for policy of nanosilver is that it would be a mistake for regulators to ignore the accumulated knowledge of our scientific and regulatory heritage in a bid to declare nanosilver materials as new chemicals, with unknown properties and automatically harmful simply on the basis of a change in nomenclature to the term "nano".

Journal Article

Abstract  The magnitude of engineered nanomaterials (ENMs) being produced and potentially released to the environment is a crucial and thus far unknown input to exposure assessment. This work estimates upper and lower bound annual United States production quantities for 5 classes of ENMs. A variety of sources were culled to identify companies producing source ENM products and determine production volumes. Using refining assumptions to attribute production levels from companies with more reliable estimates to companies with little to no data, ranges of U.S. production quantities were projected for each of the 5 ENMs. The quality of data is also analyzed; the percentage of companies for which data were available (via Web sites, patents, or direct communication) or unavailable (and thus extrapolated from other companies' data) is presented.

Journal Article

Abstract  The attention of the Council was repeatedly called to certain claims made by the firm of Schering and Glatz for the substance collargolum. These claims were of a most unusual character. If true, they would place the substance in the front rank of therapeutic agents; if unfounded, they would constitute a most reprehensible abuse of the confidence of the medical profession. In view of the importance of the matter, the Council wished to proceed with especial thoroughness. It was decided, therefore, to appoint a committee to consider the question whether exaggerated statements are contained in the pamphlets on collargol that have been distributed by the above-mentioned firm, the agents of the preparation in this country. The undersigned, being four of the five members of the committee thus appointed, beg to submit the following report:

Meetings & Symposia

Abstract  The Nanoparticle Occupational Safety and Health (NOSH) consortium of international industrial, academic, government and non-governmental organizations has focused research since the beginning of 2006 upon obtaining information on occupational safety and health associated with aerosol nanoparticles and workplace exposure monitoring and protocols. The three main technical goals of the consortium are 1) the development of a method to generate a well-characterized aerosol of solid nanoparticles and to measure aerosol behavior as a function of time; 2) the development of an air sampling method that can be used on a day-to-day basis toconduct worker exposure assessments in workplace settings; and 3) the ability to measure barrier efficiency of filter media with respect to specific engineered aerosol nanoparticles. Since one stated objective of the NOSH consortium is the wide dissemination of all findings, including nanoparticle synthesis methods, behavior of aerosol nanoparticles as a function of time, and barrier efficiency of commercially available filter media to aerosol nanoparticles, this talk will serve as one method to present data and findings from the consortium. This consortium continues work towards developing knowledge of workplace exposure monitoring capabilities and strategies through the design and development of portable aerosol monitoring instrumentation for conducting assessments of worker exposure to airborne engineered nanoparticles. Additionally the consortium continues to conduct studies to obtain knowledge of the barrier performance characteristics of commercially available filter media to aerosol nanoparticles. To accomplish these objectives, multiple aerosol synthesis and characterization systems have been designed and optimized to generate well-characterized aerosol nanoparticles of various chemistries in the 3 – 100 nm size range. These aerosol nanoparticles are transported to one of three enclosed aerosol test chambers in which the concentration and particle size distribution of the incoming aerosol nanoparticles are controlled to examine aerosol behavior as a function of time, including rate of dispersion, aggregation, and particle loss for both charged and uncharged aerosol nanoparticles. These well-controlled and well-characterized aerosol nanoparticle studies form the basis for the development of a portable nanoparticleaerosol monitoring instrument which will be field tested in a wide variety of workplace environments. Good handling techniques, which isolate the potential hazard at the source, and effective containment and control measures includingengineering controls, respiratory protective devices and protective clothing fabricsare generally considered to provide adequate protection for exposures to fine-sized particulates. However, prior to the consortium inception, the available methodologies utilized in industrial hygiene practices to measure particle exposures were typically not sufficiently sensitive to measure occupational or ambient nanoparticle aerosol concentrations, whether in terms of particle mass, particle numbers, or surface area. Through this effort, the consortium has developed the instrumentation and protocols required to assess the barrier effectiveness of filter media to charged and uncharged aerosol nanoparticles as a function of particle chemistry, particle size distributions, and number concentration. The consortium continues to focus on identifying appropriate filter media that can be used as effective barriers for aerosol nanoparticles and establishing a knowledge baseon determining specificationsfor using those filter media given a set of known properties about a specific nanoparticle aerosol.

Technical Report

Abstract  Ecological and toxicological aspects of silver (Ag) and silver salts in the environment are briefly summarized with an emphasis on natural resources. Elevated silver concentrations in biota occur in the vicinities of sewage outfalls, electroplating plants, mine waste sites, and silver-iodide seeded areas; in the United States, the photography industry is the major source of anthropogenic silver discharges into the biosphere. Silver and its compounds are not known to be mutagenic, teratogenic, or carcinogenic. Under normal routes of exposure, silver does not pose serious environmental health problems to humans at less than 50 ug total Ag/L drinking water or 10 ug total Ag/m3 air. Free silver ion, however, was lethal to representative species of sensitive aquatic plants, invertebrates, and teleosts at nominal water concentrations of 1.2 to 4.9 ug/L; sublethal effects were significant between 0.17 and 0.6 ug/L. Silver was harmful to poultry at concentrations as low as 1.8 mg total Ag/kg whole egg fresh weight by way of injection, 100 mg total Ag/L in drinking water, or 200 mg total Ag/kg in diets; sensitive mammals were adversely affected at total silver concentrations as low as 250 ug/L in drinking water, 6 mg/kg in diets, or 13.9 mg/kg whole body.

DOI
Journal Article

Abstract  Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of [?]1-10 nm.

Journal Article

Abstract  In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag+ (in the form of AgNO3). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.

Journal Article

Abstract  The antimicrobial activity of silver nanoparticles against E. coli was investigated as a model for Gram-negative bacteria. Bacteriological tests were performed in Luria?Bertani (LB) medium on solid agar plates and in liquid systems supplemented with different concentrations of nanosized silver particles. These particles were shown to be an effective bactericide. Scanning and transmission electron microscopy (SEM and TEM) were used to study the biocidal action of this nanoscale material. The results confirmed that the treated E. coli cells were damaged, showing formation of ?pits? in the cell wall of the bacteria, while the silver nanoparticles were found to accumulate in the bacterial membrane. A membrane with such a morphology exhibits a significant increase in permeability, resulting in death of the cell. These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

Technical Report

Abstract  The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described here. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies.

Journal Article

Abstract  The rapid advancement of nanotechnology has created a vast array of engineered nanomaterials (ENMs) which have unique physical (size, shape, crystallinity, surface charge) and chemical (surface coating, elemental composition and solubility) attributes. These physicochemical properties of ENMs can produce chemical conditions to induce a pro-oxidant environment in the cells, causing an imbalanced cellular energy system dependent on redox potential and thereby leading to adverse biological consequences, ranging from the initiation of inflammatory pathways through to cell death. The present study was designed to evaluate size-dependent cellular interactions of known biologically active silver nanoparticles (NPs, Ag-15 nm, Ag-30 nm, and Ag-55 nm). Alveolar macrophages provide the first defense and were studied for their potential role in initiating oxidative stress. Cell exposure produced morphologically abnormal sizes and adherence characteristics with significant NP uptake at high doses after 24 h. Toxicity evaluations using mitochondrial and cell membrane viability along with reactive oxygen species (ROS) were performed. After 24 h of exposure, viability metrics significantly decreased with increasing dose (10-75 microg/mL) of Ag-15 nm and Ag-30 nm NPs. A more than 10-fold increase of ROS levels in cells exposed to 50 microg/mL Ag-15 nm suggests that the cytotoxicity of Ag-15 nm is likely to be mediated through oxidative stress. In addition, activation of the release of traditional inflammatory mediators were examined by measuring levels of cytokines/chemokines, including tumor necrosis factor (TNF-alpha), macrophage inhibitory protein (MIP-2), and interleukin-6 (IL-6), released into the culture media. After 24 h of exposure to Ag-15 nm nanoparticles, a significant inflammatory response was observed by the release of TNF-alpha, MIP-2, and IL-1beta. However, there was no detectable level of IL-6 upon exposure to silver nanoparticles. In summary, a size-dependent toxicity was produced by silver nanoparticles, and one predominant mechanism of toxicity was found to be largely mediated through oxidative stress.

DOI
Journal Article

Abstract  The increasing use of nanomaterials in consumer products has led to increased concerns about their potential environmental and health impacts. To better understand the transport, fate, and behavior of nanoparticles in aquatic systems, it is essential to understand their interactions with different components of natural waters including natural organic matter over a broad range of physicochemical conditions. Fluorescence correlation spectroscopy was used to determine the diffusion coefficients of TiO2 nanoparticles having a nominal size of 5 nm. The effects of a various concentrations of the Suwannee River Fulvic Acid (SRFA) and the roles of pH and ionic strength were evaluated. Aggregation of the bare TiO2 nanoparticles increased for pH values near the zero point of charge. At any given pH, an increase in ionic strength generally resulted in increased aggregation. Furthermore, conditions which favored adsorption of the SRFA resulted in less aggregation of the TiO2 nanoparticles, presumably due to increased steric repulsion. Under the conditions studied here, nanoparticle dispersions were often stable for environmentally relevant conditions of SRFA, pH, and ionic strength, suggesting that in the natural environment, TiO2 dispersion might occur to a greater extent than expected.

Filter Results