RDX (121-82-4)

Project ID

2216

Category

IRIS

Added on

Jan. 9, 2013, 5:42 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  HEEP COPYRIGHT: BIOL ABS. Three Corynebacterium strains were isolated from soil polluted by cyclotrimethylene-trinitroamine (RDX). These bacteria can degrade 90% of 40-60 mg/l RDX in the medium containing 0.1% organic C source within 1-3 days. The optimum pH and temperature for degrading RDX are 6-7.5 and 30? C, respectively. The degradation of RDX is inhibited in the medium containing ammonia N.

DOI
Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. The analysis of energetic materials such as RDX and HMX in water at trace levels was accomplished by using micro-extraction by miscible solvents, such as acetonitrile, 2-propanol and acetone, and salting out the organic phase. This paper compares the results obtained with solid-phase extraction (SPE) to those obtained by demixing techniques for spiked Milli-Q water and an unfiltered lake water. A review of the data indicates that demixing with acetonitrile-sodium chloride and 2-propanol ammonium

DOI
Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. The oxidation of high explosives (HE), TNT, RDX and HMX, contaminated water has been studied under different conditions. Catalytic and advanced oxidation employing ultraviolet and hydrogen peroxide were investigated. Catalytic and non-catalytic wet oxidation of HE were carried over a 4.45 wt% PtiO2 catalyst with a particle diameter of less than 105 mum in a batch reactor at moderate pressure (|35 atm) and temperature (|200?C). Ultraviolet photolysis in combination with hydrogen peroxide oxidat mildly dependent on the amount of catalyst. The presence of catalyst resulted in about 20?C advantage in catalytic oxidation when compared to homogeneous wet oxidation. Also RDX/HMX oxidation was relatively easy without the presence of a catalyst at temperatures as low as 85?C and complete oxidation occurs at above 110?C in less than 30 min. Direct photolysis of RDX/HMX was accomplished in about 20 min whereas TNT was the most stable compound and the presence of hydrogen peroxide w

DOI
Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. RRM PESTICIDES HERBICIDES POLYCHLORINATED BIPHENYL DIOXINS OZONE UV LIGHT HYDROGEN COMPUTER

DOI
Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. RRM RESEARCH ARTICLE 2 4 6-TRINITROTOLUENE HEXAHYDRO-1 3 5-TRINITRO-1 3 5-TRIAZINE GROUND WATER POLLUTION EPA USA METHOD

DOI
Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. Fluorescence membrane formulations for detecting organic nitro compounds by fluorescence quenching were evaluated. The most sensitive membrane is prepared by solvent casting from cyclohexanone to incorporate pyrenebutyric acid into cellulose triacetate plasticized with isodecyl diphenylphosphate. The response follows the Stern-Volmer law for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT). The membrane also responds to hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). For a given set of conditions, the primary factor determining sensitivity is the extent to which each nitro compound partitions into the membrane. Detection limits are ca. 2 mg l-1 for DNT and TNT and 10 from mg l-1 for RDX. Nitrogen purging prior to the measurement enhances the sensitivity and eliminates interference from oxygen. The membrane is designed to be used for remote optical in situ screening of groundwater for contamination by explosives.

Journal Article

Abstract  Soil contamination near munitions plants and testing grounds is a serious environmental concern that can result in the formation of tissue chemical residue in exposed animals. Quantitative prediction of tissue residue still represents a challenging task despite long-term interest and pursuit, as tissue residue formation is the result of many dynamic processes including uptake, transformation, and assimilation. The availability of high-dimensional microarray gene expression data presents a new opportunity for computational predictive modeling of tissue residue from changes in expression profile. Here we analyzed a 240-sample data set with measurements of transcriptomic-wide gene expression and tissue residue of two chemicals, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), in the earthworm Eisenia fetida. We applied two different computational approaches, LASSO (Least Absolute Shrinkage and Selection Operator) and RF (Random Forest), to identify predictor genes and built predictive models. Each approach was tested alone and in combination with a prior variable selection procedure that involved the Wilcoxon rank-sum test and HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid). Model evaluation results suggest that LASSO was the best performer of minimum complexity on the TNT data set, whereas the combined Wilcoxon-HOPACH-RF approach achieved the highest prediction accuracy on the RDX data set. Our models separately identified two small sets of ca. 30 predictor genes for RDX and TNT. We have demonstrated that both LASSO and RF are powerful tools for quantitative prediction of tissue residue. They also leave more unknown than explained, however, allowing room for improvement with other computational methods and extension to mixture contamination scenarios.

Journal Article

Abstract  In this work, the combined use of desorption by a continuous wave near infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of non-volatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, the ease of use and the small size. To achieve an efficient desorption the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, HMX and RDX). A comparative evaluation revealed that the use of the laser is advantageous compared to just heating the substrate surface.

Journal Article

Abstract  Dinitroamino benzene derivatives are designed and studied in detail with quantum chemistry method. The molecular theory density, heats of formation, bond dissociation energies, impact sensitive and detonation performance are investigated at DFT-B3LYP/6-311G** level. The results of detonation performance indicated most of the compounds have better detonation velocity and pressure than RDX and HMX. The N-N bond can be regard as the trigger bond in explosive reaction, and the bond dissociation energies of trigger bond are almost not affected by the position and number of substituent group. The impact sensitive are calculated by two different theory methods. It is found that the compounds, which can become candidates of high energy materials, have smaller H(50) values than RDX and HMX. It is hoped that this work can provide some basis information for further theory and experiment studies of benzene derivatives.

Journal Article

Abstract  Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.

Journal Article

Abstract  Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a serious environmental pollutant on military land. This compound is the most widely used explosive and pollution has arisen primarily as the result of military training, along with munition manufacturing and disassembly processes. This toxic explosive is recalcitrant to degradation in the environment and leaches rapidly into groundwater, where accumulation in aquifers is threatening drinking water supplies (Clausen, et al., 2004). While plants have only limited degradative activity towards RDX, microorganisms, including Rhodococcus rhodochrous 11Y, have been isolated from contaminated land. Despite the presence of microbial RDX-metabolising activity in contaminated soils, the persistence of RDX in leachate from contaminated soil indicates that this activity or biomass is insufficient, limiting its use to remediate polluted soils. Bacterial activity in the rhizosphere is of magnitudes greater than in the surrounding soil, and the roots of grass species on training ranges in the United States are known to penetrate deeply into the soil, producing a compact root system and providing an ideal environment to support the capture of RDX by microorganisms in the rhizosphere. Here, we have investigated the ability of the root-colonising bacterium Pseudomonas fluorescens, engineered to express XplA, to degrade RDX in the rhizosphere.

Journal Article

Abstract  2,4,6-Trinitrotoluene (TNT) metabolism was compared across salinity transects in Kahana Bay, a small tropical estuary on Oahu, HI. In surface water, TNT incorporation rates (range: 3-121 μg C L(-1) d(-1)) were often 1-2 orders of magnitude higher than mineralization rates suggesting that it may serve as organic nitrogen for coastal microbial assemblages. These rates were often an order of magnitude more rapid than those for RDX and two orders more than HMX. During average or high stream flow, TNT incorporation was most rapid at the riverine end member and generally decreased with increasing salinity. This pattern was not seen during low flow periods. Although TNT metabolism was not correlated with heterotrophic growth rate, it may be related to metabolism of other aromatic compounds. With most TNT ring-carbon incorporation efficiencies at greater than 97%, production of new biomass appears to be a more significant product of microbial TNT metabolism than mineralization.

Journal Article

Abstract  The transcriptome of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading strain Gordonia sp. strain KTR9 and its glnR mutant were studied as a function of nitrogen availability to further investigate the observed ammonium-mediated inhibition of RDX degradation. The results indicate that nitrogen availability is a major determinant of RDX degradation and xplA gene expression in KTR9.

Journal Article

Abstract  Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ~50% loss of granulocytes (NOAELs=47 mg/kg) in female Sprague-Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs=24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte-erythrocyte-monocyte-megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1(+)) or erythroid (CD71(+)) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes.

Journal Article

Abstract  A new approach Procedure for Investigating Categories of Vibrations (PICVib) for estimating vibrational frequencies of selected modes using only the structure and energy calculations at a more demanding computational level is presented and explored. The PICVib has an excellent performance at only a small fraction of the computational demand required for a complete analytical calculation. The errors are smaller than ca. 0.5% when DFT functionals are combined with high level ab initio methods. The approach is general because it can use any quantum chemical program and electronic structure method. It is very robust because it was validated for a wide range of frequency values (ca. 20-4800 cm(-1) ) and systems: XH(3) (D(3h) ) with X = B, Al, Ga, N, P, As, O, S, and Se, YH(4) (D(4h) ) with Y = C, Si, and Ge, conformers of RDX, S(N) 2 and E2 reactions, [W(dppe)(2) (NNC(5) H(10) )] complex, carbon nanotubes, and hydrogen-bonded complexes including guanine-cytosine pair. © 2012 Wiley Periodicals, Inc.

Journal Article

Abstract  A picture of impact sensitivity based on the bond bundles of the electron charge density is developed, allowing the role of both inter- and intramolecular bonding interactions to be investigated. Impact sensitive materials were found to have a convergent intramolecular bond bundle with a low electron count that serves as a trigger linkage, while insensitive materials do not. The shape and electron count of the intramolecular bond bundles was found to change between the gas phase and solid state due to the formation of intermolecular bond bundles. In the case of polynitrobenzenes, this change was subtle and did not affect the trigger linkages. However, the intermolecular bond bundles in crystalline RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) change from C-N trigger linkages in the gas phase to N-N trigger linkages in the solid state. This observation offers a theoretical justification of the experimentally observed differences in the decomposition behavior of gas phase and crystalline RDX.

Journal Article

Abstract  We report calculated vibrational spectra in the range of 0-3,500 cm(-1) of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) molecules adsorbed on a model aluminum surface. A molecular film was modeled using two approaches: (1) density functional theory (DFT) was used to optimize a single RDX molecule interacting with its periodic images, and (2) a group of nine molecules extracted from the crystal structure was deposited on the surface and interacted with its periodic images via molecular dynamics (MD) simulations. In both cases, the molecule was initialized in the AAA conformer geometry having the three nitro groups in axial positions, and kept that conformation in the DFT examination, but some molecules were found to change to the AAE conformer (two nitro groups in axial and one in equatorial position) in the MD analysis. The vibrational spectra obtained from both methods are similar to each other, except in the regions where collective RDX intermolecular interactions (captured by MD simulations) are important, and compare fairly well with experimental findings.

Journal Article

Abstract  To elucidate the reactive behavior of RDX crystals at pressures and temperatures relevant to shock wave initiation, Raman spectroscopy and optical imaging were used to determine the pressure-temperature (P-T) stability and the decomposition of γ-RDX, the high pressure phase of RDX. Experiments were performed on single crystals in a diamond anvil cell at pressures from 6 to 12 GPa and at temperatures up to 600 K. Evidence for the direct decomposition of γ-RDX above 6 GPa, without the involvement of other phases, is provided. The upper limit of the P-T locus for the γ-RDX thermal decomposition was determined. A refined P-T phase diagram of RDX is presented that includes the current findings for γ-RDX. The static compression results are used to gain key insight into the shock initiation of RDX, including a determination of the RDX phase at decomposition and understanding the role of pressure and temperature in accelerating shock induced decomposition. This study has established the important role that γ-RDX plays in decomposition of RDX under static and shock compression conditions; thus theoretical modeling of RDX decomposition at high pressures and temperatures needs to incorporate the γ-phase response.

Journal Article

Abstract  We have studied herein the effect of position and the number of -NO, -NO2, -NH2 and -CH3 groups on the structure, stability, impact sensitivity, density, thermodynamic and detonation properties of triazolones by performing density functional theory calculations at the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazolones have been obtained in their ground state. Kamlet-Jacob equations were used to calculate the detonation velocity and detonation pressure of model compounds. The detonation properties of NNTO (D 8.75 to 9.10 km/s, P 34.0 to 37.57 GPa), DNTO (D 8.80 to 9.05 km/s, P 35.55 to 38.27 GPa), ADNTO (D 9.01 to 9.42 km/s and P 37.81 to 41.10 GPa) and ANNTO (D 8.58 to 9.0 km/s, P 30.81 to 36.25 GPa) are compared with those of 1,3,5-trinitro-1,3,5-triazine (RDX) (D 8.75 km/s, P 34.70 Gpa) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (D 8.96 km/s, P 35.96 GPa). The designed compounds satisfy the criteria of high energy materials.

Journal Article

Abstract  In this study, the rumen was assessed for its potential to detoxify RDX using molecular microbial ecology as well as analytical chemistry techniques. Results indicated significant loss (P < 0.05) of RDX in <8-h post incubation, and qualitative LC-MS/MS analysis showed evidence for the formation of 1-NO-RDX (M-O + HCOO) and methylenedinitramine metabolites. A total of 1106 16S rRNA-V3 clones were sequenced, and most sequences associated with either the phyla Bacteroidetes or Firmicutes. A LibCompare analysis for the RDX treatment showed an enrichment (P < 0.01) of the genus Prevotella. From these results, it can be concluded that the rumen is capable of detoxifying RDX, and the members of the genus Prevotella are linked to this detoxification.

Journal Article

Abstract  Accurate thermodynamic parameters of thin films of explosives are important for understanding their behavior in the nanometer scale as well as in standoff detection. Using UV-absorbance spectroscopy technique, accurate thermodynamic parameters such as activation energies of sublimation, sublimation rates, and vapor pressures of the explosives cyclotrimethylenetrinitramine (RDX) and 2,4,6-trinitrotoluene (TNT) were determined. The values of these parameters are in excellent agreement with those reported using traditional experiments based on gravimetry. In terms of the Clapeyron equation, the dependence of RDX and TNT vapor pressures on temperature can be described by the relations LnP (Pa)=39.6-15459/T (K) and LnP (Pa)=34.9-12058/T (K), respectively. Heats of sublimation of RDX and TNT were also determined to be 128kJ/mol and 100.2kJ/mol, respectively.

Journal Article

Abstract  Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.

Journal Article

Abstract  We have explored the geometric and electronic structures, band gap, thermodynamic properties, density, detonation velocity and detonation pressure of aminopolynitropyrazoles using the density functional theory (DFT) at the B3LYP/aug-cc-pVDZ level. The calculated detonation velocity and detonation pressure, stability and sensitivity of model compounds appear to be promising compared to the known explosives 3,4-dinitro-1 H-pyrazole (3,4-DNP), 3,5-dinitro-1 H-pyrazole (3,5-DNP), hexahydro-1,3,5-trinitro-1,3,5-triazinane (RDX) and octahydro-1,3,5,7-tetranitro-l,3,5,7-tetraazocane (HMX). The position of NH(2) group in the polynitropyrazoles presumably determines the structure, stability, sensitivity, density, detonation velocity and detonation pressure.

Journal Article

Abstract  4-Nitramino-3,5-dinitropyrazole was prepared and stabilized through the formation of its ammonium salt. With selected cations, 14 nitrogen-rich energetic salts were synthesized in high yield by metathesis reactions. These salts were fully characterized by (1)H, (13)C NMR, and IR spectroscopy and elemental analysis. Additionally, the structures of the ammonium, 3,4,5-triaminotriazolium, and biguanidinium salts were confirmed by single-crystal X-ray diffraction. Based on experimental and calculated values, the 4-nitramino-3,5-dinitropyrazolate salts show properties, such as decomposition temperatures (115-229 °C), detonation pressures (23.27-37.42 GPa) and velocities (7713-9013 ms(-1)), and impact sensitivities (5-40 J) that place them with energetics such as RDX and TATB.

  • <<
  • 1 of 65
  • >>
Filter Results