Nitrate/Nitrite

Project ID

2367

Category

IRIS

Added on

May 22, 2015, 8 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Seagrasses are key marine foundation species, currently declining due to the compounded action of global and regional anthropogenic stressors. Eutrophication has been associated with seagrass decline, while grazing has been traditionally considered to be a natural disturbance with a relatively low impact on seagrasses. In the recent years, this assumption has been revisited. Here, by means of a 16-month field-experiment, we investigated the molecular mechanisms driving the long-term response of Posidonia oceanica to the combination of nutrient enrichment, either as a chronic (press) or pulse disturbance, and herbivory. Changes in expression levels of 19 target genes involved in key steps of photosynthesis, nutrient assimilation, chlorophyll metabolism, oxidative-stress response and plant defense were evaluated through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). High herbivore pressure affected the molecular response of P. oceanica more dramatically than did enhanced nutrient levels, altering the expression of genes involved in plant tolerance and resistance traits, such as photosynthesis and defense mechanisms. Genes involved in carbon fixation and N assimilation modulated the response of plants to high nutrient levels. Availability of resources seems to modify P. oceanica response to herbivory, where the upregulation of a nitrate transporter gene was accompanied by the decline in the expression of nitrate reductase in the leaves, suggesting a change in plant-nutrient allocation strategy. Finally, press and pulse fertilizations altered nitrate uptake and reduction-related genes in opposite ways, suggesting that taking into account the temporal regime of nutrient loading is important to assess the physiological response of seagrasses to eutrophication.

Journal Article

Abstract  Cobalt(II), in the presence of acetate and nitrate, quantitatively adds to the manganese-cobalt oxido cubane MnIVCoIII3O4(OAc)5(py)3 (1) to furnish the pentametallic dangler complex MnIVCoIII3CoIIO4(OAc)6(NO3)(py)3 (2). Complex 2 is structurally reminiscent of photosystem II's oxygen-evolving center, and is a rare example of a transition-metal "dangler" complex. Superconducting quantum interference device magnetometry and density functional theory calculations characterize 2 as having an S = 0 ground state arising from antiferromagnetic coupling between the CoII and MnIV ions. At higher temperatures, an uncoupled state dominates. The voltammogram of 2 has four electrochemical events, two more than that of its parent cubane 1, suggesting that addition of the dangler increases available redox states. Structural, electrochemical, and magnetic comparisons of complexes 1 and 2 allow a better understanding of the dangler's influence on a cubane.

Journal Article

Abstract  Long-term accurate and continuous monitoring of nitrate (NO3-) concentration in wastewater and groundwater is critical for determining treatment efficiency and tracking contaminant transport. Current nitrate monitoring technologies, including colorimetric, chromatographic, biometric, and electrochemical sensors, are not feasible for continuous monitoring. This study addressed this challenge by modifying NO3- solid-state ion-selective electrodes (S-ISEs) with poly(tetrafluoroethylene) (PTFE, (C2F4) n ). The PTFE-loaded S-ISE membrane polymer matrix reduces water layer formation between the membrane and electrode/solid contact, while paradoxically, the even more hydrophobic PTFE-loaded S-ISE membrane prevents bacterial attachment despite the opposite approach of hydrophilic modifications in other antifouling sensor designs. Specifically, an optimal ratio of 5% PTFE in the S-ISE polymer matrix was determined by a series of characterization tests in real wastewater. Five percent of PTFE alleviated biofouling to the sensor surface by enhancing the negative charge (-4.5 to -45.8 mV) and lowering surface roughness (Ra: 0.56 ± 0.02 nm). It simultaneously mitigated water layer formation between the membrane and electrode by increasing hydrophobicity (contact angle: 104°) and membrane adhesion and thus minimized the reading (mV) drift in the baseline sensitivity ("data drifting"). Long-term accuracy and durability of 5% PTFE-loaded NO3- S-ISEs were well demonstrated in real wastewater over 20 days, an improvement over commercial sensor longevity.

Journal Article

Abstract  Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate in hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20-60 cm thick hypoxic zones (<2 mg O2 L-1) within which most reactive transport was observed. A 33% reduction of nitrate concentrations coincided with elevated pore water nitrous oxide concentrations as well as the appearance of manganese and the TCE metabolite cis-1,2-dichloroethene (cDCE). Elevated groundwater nitrate concentrations (>50 mg L-1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation.

Journal Article

Abstract  Reactive oxygen species (ROS) are a class of substances that are of general concern in terms of human health and are used to represent the oxidation potential (OP) of the atmosphere. In this study, the ROS levels in 116 daily fine particulate matter (PM2.5) samples taken over Xi'an in 2017 were measured with the dithiothreitol (DTT) method. The sources of DTTv (volume-based DTT consumption) in PM2.5 as well as their contributions were identified by both positive matrix factorization (PMF) and multiple linear regression (MLR) based on the measured chemical species in particulate matter (PM). The results showed that the yearly average DTTv over Xi'an was 0.53 nmol/min/m(3) (0.19-1.10 nmol/min/m(3). The highest DTTv level occurred in winter, followed by spring, summer and autumn. DTTv was the most strongly correlated with the water-soluble organic carbon (WSOC; r = 0.85), but the effects of WSOC on DTTv were very limited. SO2, NO2, CO, elemental carbon (EC) and K (r > 0.64) had moderate correlations with DTTv and were moderately related to environmentally persistent free radicals (EPFRs) (r = 0.56). The linear mixed-effects model showed that pollutants originating from incomplete combustion had greater effects on DTTv than those from complete combustion. Source apportionment results from PMF showed that motor vehicle emissions (27.4%), secondary sulfates (21.6%) and coal combustion sources (18.8%) were more important contributors to the DTTv in PM2.5 than dust sources (8.4%), metal processing (4.9%), industrial emissions (11.3%) and secondary nitrates (7.5%). The PMF results for the DTTv were consistent with the MLR results, which verified that both PMF and MLR are feasible methods for source apportionment of PM(2.5 )as well as specific species such as ROS and EPFRs. Backward trajectory clusters showed that the dominant cluster groups were local and regional transport, while the OP of the PM(2.5 )over Xi'an was affected more by long-range transport than by local transport. As stated above, the improvement of atmospheric oxidation potential require not only regional efforts but also large-scale joint cooperation. Furthermore, this study on the OP of PM as well as the specific source information provides important guidance for health effect research.

Journal Article

Abstract  BACKGROUND: Nitrates are widely used to treat coronary artery disease, but their therapeutic value is compromised by nitrate tolerance, because of the dysfunction of prostaglandin I2 synthase (PTGIS). MicroRNAs repress target gene expression and are recognized as important epigenetic regulators of endothelial function. The aim of this study was to determine whether nitrates induce nitrovasodilator resistance via microRNA-dependent repression of PTGIS gene expression.

METHODS: Nitrovasodilator resistance was induced by nitroglycerin (100 mg·kg-1·d-1, 3 days) infusion in Apoe-/- mice. The responses of aortic arteries to nitric oxide donors were assessed in an organ chamber. The expression levels of microRNA-199 (miR-199)a/b were assayed by quantitative reverse transcription polymerase chain reaction or fluorescent in situ hybridization.

RESULTS: In cultured human umbilical vein endothelial cells, nitric oxide donors induced miR-199a/b endogenous expression and downregulated PTGIS gene expression, both of which were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt or silence of serum response factor. Evidence from computational and luciferase reporter gene analyses indicates that the seed sequence of 976 to 982 in the 3'-untranslated region of PTGIS mRNA is a target of miR-199a/b. Gain functions of miR-199a/b resulting from chemical mimics or adenovirus-mediated overexpression increased PTGIS mRNA degradation in HEK293 cells and human umbilical vein endothelial cells. Furthermore, nitroglycerin-decreased PTGIS gene expression was prevented by miR-199a/b antagomirs or was mirrored by the enforced expression of miR-199a/b in human umbilical vein endothelial cells. In Apoe-/- mice, nitroglycerin induced the ectopic expression of miR-199a/b in the carotid arterial endothelium, decreased PTGIS gene expression, and instigated nitrovasodilator resistance, all of which were abrogated by miR-199a/b antagomirs or LNA-anti-miR-199. It is important that the effects of miR-199a/b inhibitions were abolished by adenovirus-mediated PTGIS deficiency. Moreover, the enforced expression of miR-199a/b in vivo repressed PTGIS gene expression and impaired the responses of aortic arteries to nitroglycerin/sodium nitroprusside/acetylcholine/cinaciguat/riociguat, whereas the exogenous expression of the PTGIS gene prevented nitrovasodilator resistance in Apoe-/- mice subjected to nitroglycerin infusion or miR-199a/b overexpression. Finally, indomethacin, iloprost, and SQ29548 improved vasorelaxation in nitroglycerin-infused Apoe-/- mice, whereas U51605 induced nitrovasodilator resistance. In humans, the increased expressions of miR-199a/b were closely associated with nitrate tolerance.

CONCLUSIONS: Nitric oxide-induced ectopic expression of miR-199a/b in endothelial cells is required for nitrovasodilator resistance via the repression of PTGIS gene expression. Clinically, miR-199a/b is a novel target for the treatment of nitrate tolerance.

Journal Article

Abstract  We recently found that renal carbonic anhydrase (CA) is involved in the reabsorption of inorganic nitrite (NO2-), an abundant reservoir of nitric oxide (NO) in tissues and cells. Impaired NO synthesis in the endothelium and decreased NO bioavailability in the circulation are considered major contributors to the development and progression of renal and cardiovascular diseases in different conditions including diabetes. Isolated human and bovine erythrocytic CAII and CAIV can convert nitrite to nitrous acid (HONO) and its anhydride N2O3 which, in the presence of thiols (RSH), are further converted to S-nitrosothiols (RSNO) and NO. Thus, CA may be responsible both for the homeostasis of nitrite and for its bioactivation to RSNO/NO. We hypothesized that enhanced excretion of nitrite in the urine may contribute to NO-related dysfunctions in the renal and cardiovascular systems, and proposed the urinary nitrate-to-nitrite molar ratio, i.e., UNOxR, as a measure of renal CA-dependent excretion of nitrite. Based on results from clinical and experimental animal studies, here, we report on a first evaluation of UNOxR. We determined UNOxR values in preterm neonates, healthy children, and adults, in children suffering from type 1 diabetes mellitus (T1DM) or Duchenne muscular dystrophy (DMD), in elderly subjects suffering from chronic rheumatic diseases, type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), or peripheral arterial occlusive disease (PAOD). We also determined UNOxR values in healthy young men who ingested isosorbide dinitrate (ISDN), pentaerythrityl tetranitrate (PETN), or inorganic nitrate. In addition, we tested the utility of UNOxR in two animal models, i.e., the LEW.1AR1-iddm rat, an animal model of human T1DM, and the APOE*3-Leiden.CETP mice, a model of human dyslipidemia. Mean UNOxR values were lower in adult patients with rheumatic diseases (187) and in T2DM patients of the DALI study (74) as compared to healthy elderly adults (660) and healthy young men (1500). The intra- and inter-variabilities of UNOxR were of the order of 50% in young and elderly healthy subjects. UNOxR values were lower in black compared to white boys (314 vs. 483, P = 0.007), which is in line with reported lower NO bioavailability in black ethnicity. Mean UNOxR values were lower in DMD (424) compared to healthy (730) children, but they were higher in T1DM children (1192). ISDN (3 × 30 mg) decreased stronger UNOxR compared to PETN (3 × 80 mg) after 1 day (P = 0.046) and after 5 days (P = 0.0016) of oral administration of therapeutically equivalent doses. In healthy young men who ingested NaNO3 (0.1 mmol/kg/d), UNOxR was higher than in those who ingested the same dose of NaCl (1709 vs. 369). In LEW.1AR1-iddm rats, mean UNOxR values were lower than in healthy rats (198 vs. 308) and comparable to those in APOE*3-Leiden.CETP mice (151).

Journal Article

Abstract  Moso bamboo (Phyllostachys Pubescens) forests exhibit a great potential to sequestrate carbon dioxide from atmosphere and to mitigate global climate change. However, they were increasingly under abandoned (i.e., no fertilization, the low intensity and frequency of felling and bamboo shoot digging) due to decreasing economic values of bamboo-related products and increasing labor cost. So far, the changes in soil carbon (C) and nitrogen (N) pools in bamboo forests following abandonment are poorly addressed. In this study, Moso bamboo stands under intensively management and abandonment for different durations were sampled to explore the C and N pool dynamics at the top 40 cm soil. We classified abandonment durations into three categories: discarded or abandoned management for 1-6 years (DM-I), 7-12 years (DM-II) and 13-18 years (DM-III). Our results indicated that (1) soil organic carbon (SOC) storage was significantly increased with abandonment management compared with intensive management (Control, CK), but the durations of abandonment management had no significant effects on SOC. Microbial biomass carbon (MBC) concentration increased from DM-I to DM-III in the 0-40 cm soil layer (P < 0.01), and water-soluble organic carbon (WSOC) concentration decreased through DM-I (P < 0.01). (2) Abandonment management did not significantly affect soil total nitrogen (TN) storage at depth of 0-40 cm, with 9.54 Mg ha(-1) for CK, 9.59 Mg ha(-1) for DM-I, 9.89 Mg ha(-1) for DM-II and 9.69 Mg ha(-1) for DM-III. Water-soluble organic nitrogen (WSON) concentration significantly decreased from CK to DM-III. Ammonium nitrogen (NH4+-N) concentration increased from DM-I to DM-III (P < 0.01), and nitrate nitrogen (NO3--N) concentration decreased from CK to DM-III (P < 0.01). The results of the effects of abandonment durations on soil properties in Moso bamboo forests provide valuable information for forest restoration and management.

Journal Article

Abstract  Forest harvest in the boreal zone can increase the input of terrestrial materials such as dissolved organic carbon (DOC) and nitrate (NO3-) into nearby aquatic ecosystems, with potential effects on phytoplankton growth through enhanced nutrient (i.e., positive) or reduced light availability (i.e., negative), which may affect ecosystem productivity and consumer resource use. Here, we conducted forest clear-cutting experiments in the catchments of four small, humic, and nitrogen-limited unproductive boreal lakes (two controls and two clear-cut, 18% and 44% of area cut) with one reference and two impact years. Our aim was to assess the effects of forest clear-cutting on pelagic biomass production and consumer resource use. We found that pelagic biomass production did not change after two years of forest clear-cutting: Pelagic primary and bacterial production (PP, BP), PP:BP ratio, chl a, and seston carbon (seston C) were unaffected by clear-cutting; neither did tree harvest affect seston stoichiometry (i.e., N:phosphorus [P], C:P) nor induce changes in zooplankton resource use, biomass, or community composition. In conclusion, our findings suggest that pelagic food webs of humic lakes (DOC > 15 mg/L) might be resilient to a moderate form of forest clear-cutting, at least two years after tree removal, before mechanical site preparation (e.g., mounding, plowing) and when leaving buffer strips along lakes and incoming streams. Thus, pelagic food web responses to forest clear-cutting might not be universal, but could depend on factors such as the time scale, share of catchment logged, and the forest practices involved, including the application of buffer strips and site preparation.

Journal Article

Abstract  Freshwater harmful algal blooms (HABs), driven by nutrient inputs from anthropogenic sources, pose unique risks to human and ecological health worldwide. A major nutrient contributor is agricultural land use, specifically tile drainage discharge. Small lakes and ponds are at elevated risk for HAB appearance, as they are uniquely sensitive to nutrient input. HABs introduce exposure risk to microcystin (MC), hepatotoxic and potentially carcinogenic cyanotoxins. To investigate the impact of anthropogenic land use on small lakes and ponds, 24 sites in central Ohio were sampled over a 3-month period in late summer of 2015. MC concentration, microbial community structure, and water chemistry were analyzed. Land use intensity, including tile drainage systems, was the driver of clustering in principle component analysis, ultimately contributing to nutrient deposition, a driver of HABs. Relative abundance of HAB-forming genera was correlated with elevated concentrations of nitrate and soluble reactive phosphate. One location (FC) showed MC concentrations exceeding 875 μg/L and large community shifts in ciliates (Oligohymenophorea) associated with hypoxic conditions. The prokaryotic community at FC was dominated by Planktothrix sp. These results demonstrate the impact of HABs in small lakes and ponds, and that prevailing issues extend beyond cyanotoxins, such as cascading impacts on other trophic levels.

Journal Article

Abstract  N2O (Nitrous oxide, a booster oxidant in rockets) has attracted increasing interest as a means of enhancing energy production, and it can be produced by nitrate (NO3-) reduction in NO3--loading wastewater. However, conventional denitrification processes are often limited by the lack of bioavailable electron donors. In this study, we innovatively propose a self-photosensitized nonphototrophic Thiobacillus denitrificans (T. denitrificans-CdS) that is capable of NO3- reduction and N2O production driven by light. The system converted >72.1 ± 1.1% of the NO3--N input to N2ON, and the ratio of N2O-N in gaseous products was >96.4 ± 0.4%. The relative transcript abundance of the genes encoding the denitrifying proteins in T. denitrificans-CdS after irradiation was significantly upregulated. The photoexcited electrons acted as the dominant electron sources for NO3- reduction by T. denitrificans-CdS. This study provides the first proof of concept for sustainable and low-cost autotrophic denitrification to generate N2O driven by light. The findings also have strong implications for sustainable environmental management because the sunlight-triggered denitrification reaction driven by nonphototrophic microorganisms may widely occur in nature, particularly in a semiconductive mineral-enriched aqueous environment.

Journal Article

Abstract  In this study, zero-valent iron (ZVI), nanoscale zero-valent iron (nZVI), Fe(II), and Mn(II) were investigated for their effects on mixotrophic denitrification coupled with cadmium (Cd(II)) adsorption process by Acinetobacter sp. SZ28. The removal rates of nitrate were 0.228 mg L-1 h-1 (ZVI), 0.133 mg L-1 h-1 (nZVI), 0.309 mg L-1 h-1 (Fe(II)) and 0.234 mg L-1 h-1 (Mn(II)), respectively. The Cd(II) removal efficiencies were 97.23% (ZVI), 95.79% (nZVI), 80.63% (Fe(II)), and 84.58% (Mn(II)), respectively. Meteorological chromatography analysis indicated that the characteristics of gas composition were different under different electron donor conditions. Moreover, characterization of bacterial metabolites produced by strain SZ28 under different conditions was analyzed. Sequence amplification identified the presence of the nitrate reductase gene (napA) and Mn(II)-oxide gene (cumA) in strain SZ28. The results of XRD and SEM indicated that ZVI, nZVI, Fe(II), and Mn(II) were oxidized into corresponding oxides. XPS spectra indicated that the Cd(II) was adsorbed onto biogenic precipitation.

Journal Article

Abstract  Toxic trace metals are widespread contaminants that are potentially immunotoxic even at environmentally low exposure levels. They can modulate the immunity to infections, e.g., in wildlife species living in contaminated areas. The diverse immune cell types can be differentially affected by the exposure leading to the modulation of specific protective mechanisms. Macrophages and mast cells, part of the innate immune system, trigger immune responses and perform particular effector functions. The present study compared toxicological and functional effects of cadmium in two models of murine macrophages (RAW264.7 and NR8383 cell lines) and two models of murine mast cells (MC/9 and RBL-2H3 cell lines). Cadmium was selected as a model compound because its known potential to induce reactive oxygen species and its relevance as an environmental contaminant. Mechanisms of toxicity, such as redox imbalance and apoptosis induction were measured in stationary cells, while functional outcome effects were measured in activated cells. Cadmium-depleted glutathione antioxidant in all four cell lines tested although reactive oxygen species was not significantly increased. Mast cells had full dose-response depletion of glutathione below cytotoxic levels while in macrophages the depletion was not complete. Functional endpoints tumour necrosis factor-alpha and nitrite production in lipopolysaccharide-activated macrophages were increased by cadmium exposure. In contrast, mast cell lipopolysaccharide-induced tumour necrosis factor-alpha and IgE-mediated histamine release were reduced by cadmium. These data indicate potentially differential effects of cadmium among murine innate immune cell types, where mast cells would be more susceptible to oxidative stress and their function might be at a higher risk to be modulated compared to macrophages.

Journal Article

Abstract  Microaerobic and hypoxic methane oxidation coupled to denitrification (MAME-D and HYME-D) occur in stabilized landfills with leachate recirculation when biological denitrification is limited by lack of organics. To evaluate nitrate denitrification efficiency and culture MAME-D/HYME-D involved bacteria, a leach bed bioreactor semi-continuous experiment was conducted for 60 days in 5 runs, under nitrate concentrations ranging of 20 mg/L–55 mg/L, wherein 5% sterile leachate was added during runs 4 and 5. Although the HYME-D system demonstrated high denitrification efficiency (74.93%) and nitrate removal rate reached 2.62 mmol N/(L⋅d), the MAME-D system exhibited a denitrification efficiency of almost 100% and nitrate removal rate of 4.37 mmol N/(L⋅d). The addition of sterile leachate increased the nitrate removal rate in both systems, but caused the decrease of methane consumption in HYME-D. A stable isotope batch experiment was carried out to investigate the metabolic products by monitoring the 13CO2 and 15N2O production. The production of organic intermediates such as citrate, lactic acid, acetate, and propionic acid were also observed, which exhibited a higher yield in HYME-D. Variations in the microbial communities were analyzed during the semi-continuous experiment. MAME-D was mainly conducted by the association of type Ⅰ methanotroph Methylomonas and the methylotrophic denitrifier Methylotenera. Methane fermentation processed by Methylomonas under hypoxic conditions produced more complex organic intermediates and increased the diversity of related heterotrophic denitrifiers. The addition of sterile real leachate, resulting in increase of COD/N, influenced the microbial community of HYME-D system significantly.

Journal Article

Abstract  This study assessed the health risk and quality of non-roof-harvested rainwater in an oil-producing community in Edo South, Nigeria. Standard analytical procedures, atomic absorption spectrophotometry and pour plate technique were utilized in the determination of physico-chemical, heavy metals and microbial parameters, respectively. Human health risk was estimated using US EPA risk assessment methodology. The pH ranges from 3.55 to 6.62 which indicated acidic rainwater; sulphate and nitrate had a range of 5.6 to 36.8, 0.11 to 0.77 mg/l and 0.2 to 0.93 mg/l, respectively. Iron and lead concentrations ranged from 0.27 to 1.79 mg/l and 0.0 to 0.025 mg/l, chromium concentrations ranged from 0.0 to 0.028 mg/l and cadmium concentrations ranged from and 0.0 to 0.021 mg/l. The total heterotrophic bacterial and total fungal counts ranged from 0.5 to 2.0 x 10 cfu/ml and 0.0 to 2.2 x 10 cfu/10 cfu/ml, respectively. The total coliform counts ranged from 2 to 12 MPN/100 ml. Health risk assessment result showed that the hazard risk from ingestion of cadmium with rain water from studied locations was 5 x 10(-6). The findings therefore suggest that there should be increased awareness about the health hazards associated with continuous intake of non-roof-harvested rain water from areas with polluted atmosphere.

Journal Article

Abstract  Fluorescence quenching based immunoassay format for the detection of a trace amount of some nitro-explosives with a high degree of selectivity is reported in this study. The immunoassay comprises anti-explosive antibodies functionalized microtitre strips specific to the targeted explosives, pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT). UV induced photolysis of nitro-explosive bound to targeted antibodies generates primarily nitrite ions which after the quick reaction with the detector molecule, 2,3-diaminonaphthalene (DAN), a fluorophore, quenches its fluorescence intensity, however, proportionately undergo cyclization to produce a highly fluorescent product, 2,3-naphthotriazole (NAT). The synthesized product, NAT, was verified using various chromatographic and spectrophotometric techniques. This newly developed antibody-based detection method, utilizing DAN dye, demonstrated a high selectivity towards PETN, RDX, and TNT. This method can be used as an economical testing kit for direct quantification of explosives, implying the great potential for quick, low-cost trace detection of explosives.

Journal Article

Abstract  An organic-based bright white light emitting compound, namely Tb(H3PTC)3 [H4PTC = perylene-3,4,9,10-tetracarboxylic acid], able to be used as part of a white diode and as a part of a RGB system that can withstand high temperatures (∼700 K), is developed using perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and terbium(iii) nitrate pentahydrate as precursors by hydrothermal synthesis. Using PTCDA as the red emitter and the new derivative of it, Tb(H3PTC)3, as the blue-green emitter, along with a common deep blue LED can form a RGB system for display technologies, around room temperature. Temperature-dependent photoluminescence properties of the Tb(H3PTC)3 compound are also investigated for the involved excitonic-emission processes and the respective recombination lifetimes. The terbium(iii) complex was prepared using a procedure that is reproducible, easily modifiable, inexpensive, and environmentally friendly, opening new pathways for its large-scale applications. Unlike PTCDA, Tb(H3PTC)3 has been shown to be soluble in N-methyl-2-pyrrolidone (NMP) as well as in dilute aqueous solutions of this organic solvent in a straightforward procedure. The light emission properties are intimately correlated with the molecular structure and electronic properties of Tb(H3PTC)3 elucidated by experimental results of X-ray Absorption Near Edge Spectroscopy (XANES), Extended X-ray Absorption Fine Structure (EXAFS) and Density Functional Theory (DFT) calculations. A bright fluorescence yield is attained with a small amount of material either in solution or in solid form showing its potential to be used in state-of-the-art organic optoelectronic devices.

Journal Article

Abstract  Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.

Journal Article

Abstract  Synthetic industrial wastewater containing approximately 2000 mg/L N, N-dimethylformamide (DMF) was treated using a lab-scale anaerobic sludge blanket (UASB) and an anaerobic membrane bioreactor (AnMBR) in this study. The inoculum consisted of two sources of sludge: Co-culture of anaerobic digested sludge (ADS) with DMF-hydrolyzing activated sludge (DAS) for the AnMBR, and co-culture of anaerobic granular sludge (AGS) with DAS for the UASB. Effective DMF methanogenic degradation of nearly 100% removal was achieved in both reactors on the first day. Both reactors obtained excellent DMF removal efficiency and high methane production under a low organic loading rate (OLR) of around 3-4 g COD/L/d. However, excessive elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6 g COD/L/d, the removal efficiency and methane production in both reactors dramatically dropped. Despite their different forms and shapes, the ADS and AGS both provide methanogens which are responsible for methanogenesis. The UASB tolerated a higher OLR while the AnMBR was limited by membrane fouling due to the increased sludge concentration. However, the AnMBR obtained high-quality effluent without suspended solid. Whether DMF can be effectively degraded depends on DAS, in which abundant DMF-hydrolyzing bacteria (DHB) provide sufficient quantities of the hydrolytic enzyme for effective hydrolysis of DMF. However, these DHB were facultative and were also identified as denitrifying bacteria which require nitrate as the electron acceptor or otherwise survive under the aerobic condition. They gradually decayed rather than proliferated and were outcompeted by methanogens. Therefore, it is conceivable that a slight dosage of nitrate would enrich the abundance of DHB in both the UASB and the AnMBR, and provide a sufficient quantity of enzymes for the DMF hydrolysis. The cultivation of the anaerobic DMF-degrading granular sludge using the UASB is considered an upgraded solution to the effective treatment of DMF-containing wastewater.

Journal Article

Abstract  This study investigates the chemical composition of water-soluble inorganic ions at eight localities situated in the Moravian-Silesian Region (the Czech Republic) at the border with Poland. Water-soluble inorganic ions were monitored in the winter period of 2018 (January, 11 days and February, 5 days). The set was divided into two periods: the acceptable period (the 24-h concentration of PM10 < 50 mu g/m(3)) and the period with exceeded pollution (PM10 > 50 mu g/m(3)). Air quality in the Moravian-Silesian Region and Upper Silesia is among the most polluted in Europe, especially in the winter season when the concentration of PM10 is repeatedly exceeded. The information on the occurrence and behaviour of water-soluble inorganic ions in the air during the smog episodes in Europe is insufficient. The concentrations of water-soluble ions (chlorides, sulphates, nitrates, ammonium ions, potassium) during the exceeded period are higher by two to three times compared with the acceptable period. The major anions for both acceptable period and exceeded pollution are nitrates. During the period of exceeded pollution, percentages of water-soluble ions in PM10 decrease while percentages of carbonaceous matter and insoluble particles (fly ash) increase.

Journal Article

Abstract  The in situ evaluation of the genotoxic impact of the Karaj River was performed using the comet and micronucleus (MN) assays in erythrocytes, liver, gill and kidney of indigenous brown trout, Salmo trutta fario from three different stations, including Varangerud, Asara and Purkan. The results showed that DNA damage significantly increased in sampled fish erythrocytes, liver and gill from low levels in the upstream river (Varangerud) via intermediate levels in downstream (Purkan) to high levels in the middle of the river (Asara), correlating with the river increasing pollution gradient. Gill was the most sensitive tissue followed by blood and liver. Kidney did not respond to the genotoxic gradient of the river. MN test (as a complementary assay) of liver cells of fish was a sensitive biomarker of genotoxic exposure. MN test in blood, gill and kidney did not reflect the genotoxic condition of the river.

Journal Article

Abstract  The coordination chemistry of plutonium(IV) and plutonium(VI) with the complexing agents tetraphenyl and tetra-isopropyl imidodiphosphinate (TPIP- and TIPIP-) is reported. Treatment of sodium tetraphenylimidodiphosphinate (NaTPIP) and its related counterpart with peripheral isopropyl groups (NaTIPIP) with [NBu4]2[PuIV(NO3)6] yields the respective PuIV complexes [Pu(TPIP)3(NO3)] and [Pu(TIPIP)2(NO3)2] + [PuIV(TIPIP)3(NO3)]. Similarly, the reactions of NaTPIP and NaTIPIP with a Pu(VI) nitrate solution lead to the formation of [PuO2(HTIPIP)2(H2O)][NO3]2, which incorporates a protonated bidentate TIPIP- ligand, and [PuO2(TPIP)(HTPIP)(NO3)], where the protonated HTPIP ligand is bound in a monodentate fashion. Finally, a mixed U(VI)/Pu(VI) compound, [(UO2/PuO2)(TPIP)(HTPIP)(NO3)], is reported. All these actinyl complexes remain in the +VI oxidation state in solution over several weeks. The resultant complexes have been characterized using a combination of X-ray structural studies, NMR, optical, vibrational spectroscopies, and electrospray ionization mass spectrometry. The influence of the R-group (R = phenyl or iPr) on the nature of the complex is discussed with the help of DFT studies.

Journal Article

Abstract  Repeat sampling and age tracers were used to examine trends in nitrate, arsenic, and uranium concentrations in groundwater beneath irrigated cropland. Much higher nitrate concentrations in shallow modern groundwater were observed at both the Columbia Plateau and High Plains sites (median values of 10.2 and 15.4 mg/L as N, respectively) than in groundwater that recharged prior to the onset of intensive irrigation (median values of <1 and <4 mg/L as N, respectively). Repeat sampling of these well networks indicates that high nitrate concentrations in modern, shallow groundwater have been sustained for decades, posing a future risk to older, deeper groundwater used for drinking water. In fact, nitrate concentrations in older modern water (30-60 years since recharge) at the High Plains site have increased in the past decade. Groundwater irrigated areas in the Columbia Plateau tend to have higher nitrate concentrations in groundwater than surface water irrigated areas, suggesting repeated dissolution of land applied fertilizer during recirculation may be an important factor causing high nitrate concentrations in groundwater. Mobilization of uranium and arsenic by land surface activities is suggested by the higher concentrations of these constituents in modern, shallow groundwater than in older, deeper groundwater at the Columbia Plateau site. Bicarbonate concentrations in modern groundwater are positively correlated with uranium (r = 0.72, p < 0.01), suggesting bicarbonate may mobilize uranium in this system. A positive correlation between arsenic and phosphorus concentrations in modern groundwater (r = 0.55, p < 0.01) suggests that phosphate from fertilizer outcompetes arsenate for sorption sites, mobilizing sorbed arsenic derived from past pesticide use or other sources.

Journal Article

Abstract  The multi-barrier deep geological repository system is currently considered as one of the safest option for the disposal of high-level radioactive wastes. Indigenous microorganisms of bentonites may affect the structure and stability of these clays through Fe-containing minerals biotransformation and radionuclides mobilization. The present work aimed to investigate the behavior of bentonite and its bacterial community in the case of a uranium leakage from the waste containers. Hence, bentonite microcosms were amended with uranyl nitrate (U) and glycerol-2-phosphate (G2P) and incubated aerobically for 6 months. Next generation 16S rRNA gene sequencing revealed that the bacterial populations of all treated microcosms were dominated by Actinobacteria and Proteobacteria, accounting for >50% of the community. Additionally, G2P and nitrate had a remarkable effect on the bacterial diversity of bentonites by the enrichment of bacteria involved in the nitrogen and carbon biogeochemical cycles (e.g. Azotobacter). A significant presence of sulfate-reducing bacteria such as Desulfonauticus and Desulfomicrobium were detected in the U-treated microcosms. The actinobacteria Amycolatopsis was enriched in G2P‑uranium amended bentonites. High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy analyses showed the capacity of Amycolatopsis and a bentonite consortium formed by Bradyrhizobium-Rhizobium and Pseudomonas to precipitate U as U phosphate mineral phases, probably due to the phosphatase activity. The different amendments did not affect the mineralogy of the bentonite pointing to a high structural stability. These results would help to predict the impact of microbial processes on the biogeochemical cycles of elements (N and U) within the bentonite barrier under repository relevant conditions and to determine the changes in the microbial community induced by a uranium release.

Journal Article

Abstract  Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification.

  • <<
  • 5 of 400
  • >>
Filter Results