Trimethylbenzenes (Interagency Science Discussion Draft)

Project ID

2375

Category

IRIS

Added on

June 29, 2015, 10:57 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Borrelia miyamotoi, a relapsing fever spirochete transmitted by ixodid ticks, is able to cause infections associated with systemic complaints, including malaise and fever, as well as meningoencephalitis in immunocompromised patients. In order to elucidate immune evasion of previously difficult to cultivate B. miyamotoi, we have examined the ability of this newly emerging human pathogen to escape the complement system. Growth inhibition assays revealed that B. miyamotoi is strongly resistant to complement-mediated bacteriolysis. Investigating complement activation, we found that B. miyamotoi showed reduced deposition of components C3, C5, C7, C8, C9 as well as the membrane attack complex (MAC) on the borrelial surface. In addition, no aberrations in cell morphology were observed after incubation of B. miyamotoi in active human serum, confirming the findings of the growth inhibition assay. The data presented here provide strong evidence that B. miyamotoi overcome human complement by affecting the central complement component C3, thereby inhibiting formation of the C3 convertase and downstream activation of the complement cascade.

Journal Article

Abstract  Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (+/- 4.5) and 6.8 (+/- 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up.

Journal Article

Abstract  Synthetic antagonists of the nuclear receptor PPARγ such as GW9662 are widely used to elucidate receptor-mediated ligand effects. In addition and complementary to recent work, we examined whether GW9662 is suitable to serve for mechanistic investigation in T-helper cells. Human peripheral blood mononuclear cells (PBMC) were preincubated with increasing concentrations of GW9662 (0, 0.4, 2, and 10 μmol/L) 30 min before adding the c9,t11-isomer of conjugated linoleic acid (c9,t11-CLA) as representative of PPARγ-activating fatty acids with immunomodulatory properties. Corresponding cultures were incubated with GW9662 in the absence of the fatty acid. After 19 h, cells were mitogen stimulated for further 5 h. Subsequently, intracellular IL-2 was measured in CD3(+)CD4(+) lymphocytes by means of flow cytometry. 100 μmol/L c9,t11-CLA reduced the number of T-helper cells expressing IL-2 by 68%. GW9662 failed to abrogate this fatty acid effect, likely due to the fact that the compound exerted an own inhibitory effect on IL-2 production. Moreover, GW9662 dose-dependently induced cell death in human leukocytes. These results suggest that application of GW9662 is not conducive in this experimental setting.

Journal Article

Abstract  Haemophilus influenzae type b (Hib) escapes the host immune system by recruitment of the complement regulator vitronectin, which inhibits the formation of the membrane attack complex (MAC) by inhibiting C5b-C7 complex formation and C9 polymerization. We reported previously that Hib acquires vitronectin at the surface by using Haemophilus surface fibrils (Hsf). Here we studied in detail the interaction between Hsf and vitronectin and its role in the inhibition of MAC formation and the invasion of lung epithelial cells. The vitronectin-binding region of Hsf was defined at the N-terminal region comprising Hsf amino acids 429 to 652. Moreover, the Hsf recognition site on vitronectin consisted of the C-terminal amino acids 352 to 374. H. influenzae was killed more rapidly in vitronectin-depleted serum than in normal human serum (NHS), and increased MAC deposition was observed at the surface of an Hsf-deficient H. influenzae mutant. In parallel, Hsf-expressing Escherichia coli selectively acquired vitronectin from serum, resulting in significant inhibition of the MAC. Moreover, when vitronectin was bound to Hsf, increased bacterial adherence and internalization into epithelial cells were observed. Taking our findings together, we have defined a fine-tuned protein-protein interaction between Hsf and vitronectin that may contribute to increased Hib virulence.

Journal Article

Abstract  We used vertical growth phase (VGP) human VMM5 melanoma cells to ask whether the tumor microenvironment could induce matrix metalloproteinase-1 (MMP-1) in vivo, and whether this induction correlated with metastasis. We isolated two clones from parental VMM5 cells: a low MMP-1 producing clone (C4) and high producing clone (C9). When these clones were injected orthotopically (intradermally) into nude mice, both were equally tumorigenic and produced equivalent and abundant amounts of MMP-1. However, the tumors from the C4 clones displayed different growth kinetics and distinct profiles of gene expression from the C9 population. The C4 tumors, which had low MMP-1 levels in vitro, appeared to rely on growth factors and cytokines in the microenvironment to increase MMP-1 expression in vivo, while MMP-1 levels remained constant in the C9 tumors. C9 cells, but not C4 cells, grew as spheres in culture and expressed higher levels of JARID 1B, a marker associated with melanoma initiating cells. We conclude that VMM5 melanoma cells exhibit striking intra-tumor heterogeneity, and that the tumorigenicity of these clones is driven by different molecular pathways. Our data suggest that there are multiple mechanisms for melanoma progression within a tumor, which may require different therapeutic strategies.

Journal Article

Abstract  The post-PKS modification steps of FK506 biosynthesis include C9-oxidation. and 31-O-methylation, but the sequence of these reactions and the exact route have remained unclear. This Study details the post-PM modification pathways in FK506 biosynthesis through the identification of all intermediates and in vitro enzymatic reactions of the cytochrome P450 hydroxylase FkbD and the methyltransferase FkbM. These results complete our understanding of post-PKS, Modification steps to FK506 showing the substrate flexibility of two enzymes involved and the existence of two parallel biosynthetic routes to FK506.

Journal Article

Abstract  BACKGROUND: Ferritin is an iron storage protein, which plays a key role in iron metabolism. Measurement of ferritin level in serum is one of the most useful indicators of iron status and also a sensitive measurement of iron deficiency. Monoclonal antibodies may be useful as a tool in various aspects of ferritin investigations. In this paper, the production of a murine monoclonal antibody (mAb) against human ferritin was reported.

METHODS: Balb/c mice were immunized with purified human ferritin and splenocytes of hyper immunized mice were fused with Sp2/0 myeloma cells. After four times of cloning by limiting dilution, a positive hybridoma (clone: 2F9-C9) was selected by ELISA using human ferritin. Anti-ferritin mAb was purified from culture supernatants by affinity chromatography.

RESULTS: Determination of the antibody affinity for ferritin by ELISA revealed a relatively high affinity (2.34×10(9) M (-1)) and the isotype was determined to be IgG2a. The anti-ferritin mAb 2F9-C9 reacted with 79.4% of Hela cells in flow cytometry. The antibody detected a band of 20 kDa in K562 cells, murine and human liver lysates, purified ferritin in Western blot and also ferritin in human serum.

CONCLUSION: This mAb can specifically recognize ferritin and may serve as a component of ferritin diagnostic kit if other requirements of the kit are met.

Journal Article

Abstract  A full-length cDNA coding for hydroperoxide lyase (CsHPL) was isolated from cucumber fruits of No. 26 (Southern China type) and No.14-1 (Northern China type), which differed significantly in fruit flavor. The deduced amino acid sequences of CsHPL from both lines show the same and significant similarity to known plant HPLs and contain typical conserved domains of HPLs. The recombinant CsHPL was confirmed to have 9/13-HPL enzymatic activity. Gene expression levels of CsHPL were measured in different organs, especially in fruits of different development stages of both lines. The HPL activities of fruit were identified basing on the catalytic action of crude enzyme extracts incubating with 13-HPOD (13-hydroperoxy-(9Z,12E)-octadecadienoic acid) and 13-HPOD + 9-HPOD (9-hydroperoxy-(10E,12Z)-octadecadienoic acid), and volatile reaction products were analyzed by GC-MS (gas chromatography-mass spectrometry). CsHPL gene expression in No. 26 fruit occurred earlier than that of total HPL enzyme activity and 13-HPL enzyme activity, and that in No. 14-1 fruit was consistent with total HPL enzyme activity and 9-HPL enzyme activity. 13-HPL enzyme activities decreased significantly and the 9-HPL enzyme activities increased significantly with fruit ripening in both lines, which accounted for the higher content of C6 aldehydes at 0-6 day post-anthesis (dpa) and higher content of C9 aldehydes at 9-12 dpa.

Journal Article

Abstract  Two novel aerobic p-n-nonylphenol-degrading bacterial strains were isolated from seawater obtained from the coastal region of Ogasawara Islands, Japan. The 16S rRNA gene sequence analysis indicated that the strains are affiliated with the order Alteromonadales within the class Gammaproteobacteria. One isolate, strain KU41G2, is most closely related to Maricurvus nonylphenolicus (99.2 % similarity), and is tentatively identified as M. nonylphenolicus. The other isolate, strain KU41G(T), is also most closely related to M. nonylphenolicus; however, the 16S rRNA gene sequence similarity was only 94.7 %. Cells of strain KU41G(T) are Gram-negative rods with a single polar flagellum. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were C17:1 ω8c (24.2 %); C15:0 iso 2-OH; and/or C16:1 ω7c (16.3 %), C15:0 (10.3 %), C11:0 3-OH (9.5 %), C9:0 3-OH (6.7 %), C10:0 3-OH (6.4 %), and C18:1 ω7c (5.5 %). The DNA G+C content was 53.3 mol%. On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41G(T) is suggested to represent a novel species of a new genus, for which we propose the name Pseudomaricurvus alkylphenolicus gen. nov., sp. nov. The type strain of P. alkylphenolicus is KU41G(T) (=JCM 19135(T) = KCTC 32386(T)).

Journal Article

Abstract  PURPOSE: There is an increased interest in the benefits of conjugated α-linolenic acid (CLNA) on obesity-related complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1% dietary supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in neonatal pigs.

METHODS: Since mono-CLNA isomers combine one conjugated two-double-bond system with an n-3 polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural characteristics of the molecules by comparing a CLNA diet with three other dietary fats: (1) conjugated linoleic acid (c9-t11-18:2 + t10-c12-18:2; CLA), (2) non-conjugated n-3 PUFA, and (3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed among the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After 2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted.

RESULTS: Dietary supplementation with mono-CLNA did not modify body weight/fat or blood lipid profiles (p > 0.82 and p > 0.57, respectively) compared with other dietary groups. Plasma glucose, insulin, and C-peptide responses to OGTT and IVGTT in the CLNA group were not different from the three other dietary groups (p > 0.18 and p > 0.15, respectively). Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty acids (18:3n-3; 20:3n-3; 22:5n-3; p < 0.001).

CONCLUSIONS: These results suggest that providing 1% mono-CLNA is not effective in improving insulin sensitivity in neonatal pigs.

Journal Article

Abstract  This study addressed the contribution of ADAMTS13 deficiency to complement activation in thrombotic thrombocytopenic purpura (TTP). Renal tissue and blood samples were available from 12 TTP patients. C3 and C5b-9 deposition were demonstrated in the renal cortex of two TTP patients, by immunofluorescence and immunohistochemistry, respectively. C3 was also demonstrated in the glomeruli of Shiga toxin-2-treated Adamts13(-/-) mice (n = 6 of 7), but less in mice that were not Shiga toxin-2 treated (n = 1 of 8, p < 0.05) or wild-type mice (n = 0 of 7). TTP patient plasma (n = 9) contained significantly higher levels of complement-coated endothelial microparticles than control plasma (n = 13), as detected by flow cytometry. Exposure of histamine-stimulated primary glomerular endothelial cells to platelet-rich plasma from patients, or patient platelet-poor plasma combined with normal platelets, in a perfusion system, under shear, induced C3 deposition on von Willebrand factor-platelet strings (on both von Willebrand factor and platelets) and on endothelial cells. Complement activation occurred via the alternative pathway. No C3 was detected when cells were exposed to TTP plasma that was preincubated with EDTA or heat-inactivated, or to control plasma. In the perfusion system, patient plasma induced more release of C3- and C9-coated endothelial microparticles compared with control plasma. The results indicate that the microvascular process induced by ADAMTS13 deficiency triggers complement activation on platelets and the endothelium, which may contribute to formation of thrombotic microangiopathy.

Journal Article

Abstract  BACKGROUND: Thymic stromal lymphopoietin (TSLP) plays critical roles in the induction and exacerbation of allergic diseases. We tested various chemicals in the environment and found that xylene and 1,2,4-trimethylbenzene induced the production of TSLP in vivo. These findings prompted us to search for additional chemicals that induce TSLP production. In this study, we examined whether fatty acids could induce the production of TSLP in vivo and exacerbate allergic inflammation.

METHODS: Various fatty acids and related compounds were painted on the ear lobes of mice and the amount of TSLP in the homogenate of ear lobe tissue was determined. The effects of nonanoic acid on allergic inflammation were also examined.

RESULTS: Octanoic acid, nonanoic acid, and decanoic acid markedly induced TSLP production, while a medium-chain aldehyde and alcohol showed only weak activity. Nonanoic acid induced the production of TSLP with a maximum at 24 h. TSLP production was even observed in nonanoic acid-treated C3H/HeJ mice that lacked functional toll-like receptor 4. The aryl hydrocarbon receptor agonist β-naphthoflavone did not induce TSLP production. Nonanoic acid promoted sensitization to ovalbumin, resulting in an enhancement in the cutaneous anaphylactic response. In addition, painting of nonanoic acid after the sensitization augmented picryl chloride-induced thickening of the ear, which was reversed in TSLP receptor-deficient mice.

CONCLUSIONS: Nonanoic acid and certain fatty acids induced TSLP production, resulting in the exacerbation of allergic inflammation. We propose that TSLP-inducing chemical compounds such as nonanoic acid be recognized as chemical allergo-accelerators.

Journal Article

Abstract  This study compared carcass, meat quality and fatty acid profiles of longissimus thoracis (LT) from feedlot cattle fed barley grain with or without oilseed (OS). Six diets containing no oilseed (No-OS), 10% ground flaxseed (FS), 10% high oleate sunflower seeds (SS) with or without 30% triticale dried distiller's grain (DDGS) were prepared. Feeding DDGS increased chroma at 24 and 144 h post mortem. Feeding FS increased weight% of LT PUFA (P<0.05) compared to No-OS or SS. An OS by DDGS interaction occurred for 18:3n-3 (P<0.05) where FS increased weight% of 18:3n-3 (P<0.05), a response accentuated (P<0.05) by DDGS. Feeding DDGS increased weight% of LT 18:2n-6 (P<0.05), but neither OS nor DDGS affected conjugated linoleic acid (CLA, t7,c9 &c9,t11-18:2). Feeding FS increased weight% of n-3 FA, and both FS and SS increased t10-18:1 with no effect on CLA or t11-18:1. Combination feeding of DDGS and FS further increased weight% of n-3 FA and tempered increases in t10-18:1 with no effect on CLA or t11-18:1. The findings suggest a new strategy to increase beef omega-3 fatty acids efficiently through inclusion of a combination of DDGS and FS in feedlot diet.

Journal Article

Abstract  Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium(®) SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using 'pseudomolecules' representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed.

Journal Article

Abstract  Six new (1-6) and 19 known monoterpenoid glucosides were isolated from the root bark of Paeonia suffruticosa. The monoterpenoid glucosides 1, 2, 7, 10-19, and 22 exhibited anticomplement effects with CH50 and AP50 values ranging from 0.14 to 2.67 mM and 0.25 to 3.67 mM, respectively. In a mechanistic study, suffrupaeoniflorin A (1) interacted with C1q, C3, C5, and C9, while galloylpaeoniflorin (12) and galloyloxypaeoniflorin (19) acted on C1q, C3, and C5 components in the complement activation cascade.

Journal Article

Abstract  GGGGCC (G4C2) hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) has been identified as the most common genetic abnormality in both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). To investigate the role of C9ORF72-related G4C2 repeat expansion in ALS and FTLD, several animal and cell culture models have been generated that reveal initial insights into the disease pathogenesis of C9 ALS/FTLD. These models include neurons differentiated from patient-derived pluripotent stem cells as well as genetically engineered cells and organisms that knock down C9ORF72 orthologues or express G4C2 repeats. Targeted reduction or knockdown of C9ORF72 homologues in zebrafish and mice so far produced conflicting results which neither rule out, nor confirm reduced expression of C9ORF72 as a pathogenic mechanism in C9 ALS/FTLD. In contrast, studies using patient-derived cells, as well as Drosophila and zebrafish models overexpressing disease-related hexanucleotide expansions, can cause repeat length-dependent formation of RNA foci, which directly and progressively correlate with cellular toxicity. RNA foci formation is accompanied by sequestration of specific RNA-binding proteins (RBPs), including Pur-alpha, hnRNPH and ADARB2, suggesting that G4C2-mediated sequestration and functional depletion of RBPs are cytotoxic and thus directly contribute to disease. Moreover, these studies provide experimental evidence that repeat-associated non-ATG translation of repeat-containing sense and antisense RNA leads to dipeptide-repeat proteins (DPRs) that can accumulate and aggregate, indicating that accumulation of DPRs may represent another pathogenic pathway underlying C9 ALS/FTLD. These studies in cell and animal models therefore identify RNA toxicity, RBP sequestration and accumulation of DPRs as emerging pathogenic pathways underlying C9 ALS/FTLD.

Journal Article

Abstract  The present study was carried out with an aim to develop anti-nucleoprotein (anti-NP) monoclonal antibodies (MAbs) for use in immunodiagnostic testing for detection of avian influenza virus (AIV) antigen or antibodies. The NP gene of AIV, cloned in pET vector, was expressed in Escherichia coli BL 21 strain to produce a 6x-His tagged recombinant NP (rNP) antigen of ∼61 kDa molecular weight as soluble fraction. The rNP antigen was detected in soluble fraction of bacterial cell lysate with anti-His HRPO conjugate and reacted with the reference AIV antibody positive serum in immunoblotting. The rNP was used to immunize BALB/c mice to produce hybridoma secreting anti-NP MAbs. Out of 11 anti-NP MAbs produced, 8D2-H5, 8D2-H9, and 6D11-A7 were of IgM isotype and 5D10-C9 and 5D10-F11 were of IgG2b type, while 3F3-D2, 7D2-C9, 7D2-G7, and 7D2-G8 were of IgG1 isotype. The MAbs 3F3-D2 and 7D2-G8 showed high intensity positive reaction with rNP and a low intensity reaction with H5N1 virus in Western blot analysis. The anti-NP MAbs produced in the present work may be valuable in developing a competitive ELISA or immunochromatographic strip test-based assays for the rapid diagnosis of avian influenza.

Journal Article

Abstract  Neferine is a bisbenzylisoquinoline alkaloid isolated from the seed embryos of Nelumbonucifera Gaertn (Lotus) with various potent pharmacological effects. Recently, neferine has attracted attention for its anti-tumor activities. Our study explored its metabolism and cytotoxicity mechanism. Approaches using chemical inhibitors and recombinant human enzymes to characterize the involved enzymes and kinetic studies indicated that the demethylation of neferine by cytochrome P450 (CYP) 2D6 and CYP3A4 fitted a biphasic kinetic profile. Glutathione (GSH) was used as a trapping agent to identify reactive metabolites of neferine, and four novel GSH conjugates were detected with [M+H](+) ions at m/z 902.4, 916.2, 916.1, and 930.4. Based on its structure containing para-methylene phenol and results from a product ion scan, GSH tends to conjugate with C9' after undergoing oxidative metabolism to form the binding site predominated by CYP3A4. Furthermore, the addition of recombinant human GSTA1, GSTT1, and GSTP1 had little effect on the production of the GSH conjugates. In a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, combined with the GSH modulators l-buthionine sulfoximine or N-acetyl-l-cysteine, neferine treatment of MDCK-hCYP3A4 and HepG2 cells revealed that CYP3A4 expression and cellular GSH content could cause an EC50 shift. Metabolic activation mediated by CYP3A4 and GSH depletion significantly enhanced neferine-induced cytotoxicity.

Journal Article

Abstract  Nine new C-9 polyketides, named aspiketolactonol (1), aspilactonols A-F (2-7), aspyronol (9) and epiaspinonediol (11), were isolated together with five known polyketides, (S)-2-(2'-hydroxyethyl)-4-methyl-gamma-butyrolactone (8), dihydroaspyrone (10), aspinotriol A (12), aspinotriol B (13) and chaetoquadrin F (14), from the secondary metabolites of an Aspergillus sp. 16-02-1 that was isolated from a deep-sea sediment sample. Structures of the new compounds, including their absolute configurations, were determined by spectroscopic methods, especially the 2D NMR, circular dichroism (CD), Mo-2-induced CD and Mosher's H-1 NMR analyses. Compound 8 was isolated from natural sources for the first time, and the possible biosynthetic pathways for 1-14 were also proposed and discussed. Compounds 1-14 inhibited human cancer cell lines, K562, HL-60, HeLa and BGC-823, to varying extents.

Journal Article

Abstract  BACKGROUND: Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response.

RESULTS: To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae.

CONCLUSIONS: Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for highly efficient alkane biofuel production.

Journal Article

Abstract  HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression.

Journal Article

Abstract  The c9,t11 isomer of conjugated linoleic acid (CLA) is the most abundant CLA form present in the human diet, and is particularly prevalent in milk and dairy products, and is known to exert several health benefits in experimental animal models. A possible mechanism of action of c9,t11CLA relies on its metabolism via desaturases and elongases and partial beta oxidation in peroxisomes. In this study, we aimed to establish plasma incorporation of c9,t11CLA and its downstream metabolites in healthy volunteers after daily dietary intakes of 0.8g, 1.6g or 3.2g of c9,t11CLA in capsule form for two months. Following supplementation, the plasma concentrations of c9,t11CLA and its metabolites conjugated dienes (CD) 18:3 and the beta oxidation product CD 16:2 were incorporated in a linear fashion, while on the other hand CD 20:3 reached a plateau following intakes of 1.6g/d of dietary intake, and was not further increased following higher CLA intakes. We may conclude that supplementation of c9,t11 CLA levels result in linear responses of CLA and its main metabolites in plasma. In addition, only the highest concentration of CLA intake tested (3.2g/d) yielded plasma concentrations of CLA and metabolites close to the range found sufficient to exert nutritional effects in experimental animal models.

Journal Article

Abstract  Introgression of exotic maize (Zea mays L.) germplasm is an effective approach to broadening the genetic base of Chinese germplasm. America is the center of maize origin and germplasm diversity. By analyzing general combining ability effects and heterosis responses among maize populations from the U.S., International Maize and Wheat Improvement Center (CIMMYT), and Brazil studied by different authors, 24 elite maize populations from America region, including eight U.S. populations, eight CIMMYT populations, and eight Brazilian populations, were identified as having high potential in China. Based on adaptation improvement, we suggest to introgress BSSS(R)C10, BS10(FR)C14, BS13(S)C9, BSK(HI)C8 Syn 3, BR106, Pop44(C8), and Pop45(C3) into Chinese heterotic group A, and introgress BS11(FR)C14, BS16(S)C3 Syn 2, BS29(R)C3, BSCB1(R)C14, BR105, and Pop42(C4) into Chinese heterotic group B by forming semi-exotic populations or pools, respectively, in order to broaden the Chinese germplasm base.

Journal Article

Abstract  OBJECTIVE: Visceral fat accumulation and metabolic syndrome incidence among women increase after menopause; therefore, fat metabolic changes and fat redistribution may occur according to menstrual status. The aim of our study was to clarify differences in subcutaneous and visceral adipose tissue metabolism between premenopausal and postmenopausal women, using metabolomics.

METHODS: Thirty-nine (16 premenopausal and 23 postmenopausal) women were recruited through elective gynecologic surgery, and both subcutaneous and visceral adipose tissues were collected during surgical operation. Metabolite profiling of adipose tissue was performed by capillary electrophoresis with electrospray ionization time-of-flight mass spectrometry.

RESULTS: Sedoheptulose 7-phosphate, a midproduct of the pentose phosphate pathway, was significantly higher (P < 0.05) in visceral adipose tissues of premenopausal women. Dihydroxyacetone phosphate and fructose-1,6-biphosphate, midproducts of glycolysis, were significantly higher (P < 0.05) in subcutaneous adipose tissues of postmenopausal women. The concentrations of fatty acid metabolites-heptanoate (C7:0; premenopausal vs postmenopausal, 4.07 [0.72] vs 2.64 [0.28] nmol/g), octanoate (C8:0; 3.52 [0.29] vs 5.20 [0.29] nmol/g), and pelargonate (C9:0; 8.03 [0.49] vs 10.66 [0.44] nmol/g)-in the visceral fat (but not in subcutaneous fat) of postmenopausal women were significantly higher (P < 0.05) than those in the visceral fat of premenopausal women.

CONCLUSIONS: Fatty acid metabolites increase in visceral fat (but not in subcutaneous fat) after menopause. The change in fatty acid metabolism in visceral adipose tissues might be related to metabolic syndrome in postmenopausal women.

  • <<
  • 7 of 13
  • >>
Filter Results