Gluconates

Project ID

2761

Category

OPPT

Added on

Oct. 23, 2018, 8:31 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  PESTAB Therapy of chronic poisonings with organochlorine compounds, such as DDT, BHC, 2-KF, dichloralurea, 2,4-D, polychloropinene, and hexachlorobutadiene, is reviewed. Since the mechanism of action of organochlorine compounds in humans is not known, specific antidote therapy is not available. Glucose, calcium gluconate, and vitamins, especially vitamin B, are useful during the initial stage of the chronic poisoning, characterized by autonomic dystonia and the asthenic syndrome. Belladonna preparations are used for elimination of autonomic irritability and of vasculay spasms, and tranquilizers are given to reduce emotional lability. Vitamin preparations, cocarboxylase, adenosine triphosphatase, and oxygen therapy are used to control hypoxia and to increase tonus. Electrophoresis according to Shcherbak with calcium chloride, vitamin B1, dimedrol, or novocaine is also useful. Vitamin B12 is given to control toxic polyneuritis. Hemorrhagic vasculitis is treated with vitamins C and P. B vitamins, thiamine, riboflavin, glucose, and insulin are used for the therapy of toxic hepatitis. Impairments of gastric secretory function are corrected by specific diets, nicotinic acid, and pyridoxine. Vitamins C and B, thiamine, folic acid, and iron preparations are useful in anemia.

Journal Article

Abstract  Lactobionic acid, [4-beta-(galactosido)-D-gluconic acid] = LBA, is the major component of the Wisconsin organ transplantation preservant fluid and may suppress oxygen radical-induced tissue damage upon reperfusion by the control of FeII autoxidation. FeII and FeIII complexes of LBA and the related gluconic acid (GLC) have been studied herein by titrimetric, infrared, and electrochemical methods (CV; DPP). FeII(GLC) forms quickly at pH 7, but FeII(LBA) reacts in two steps, the second requiring 4 hr. The initial complex lacks coordination of the LBA carboxylate (C-1) and is bound by the "2,3,5" hydroxyl groups. The slow rearrangement forms a "1,2,3,6" chelate which FeII(LBA) shares in common with the donor set of the FeIII(LBA) complex. Titration data shows the removal of three protons from LBA through pH 5 and an additional proton from pH 6 to 9 which is indicative of the [FeIII(LBA)(OH)(H2O)]- formulation with LBA donating at the "1,2,3,6" positions. The more stable, second form of FeII(LBA) has been investigated in its oxidation mechanisms with H2O2 and O2 using selected trapping agents for HO. and ferryl intermediates. Eighty-six percent of the oxidation events of FeII(LBA)/H2O2 occurs in steps involving formation and reduction of freely diffusible HO.. These pathways are altered by the known HO. traps t-butanol, dmso, ethanol, and methanol in the manner predictable for beta-oxidizing radicals (from t-butanol or dmso) and alpha-reducing radicals (from ethanol and methanol). Fourteen percent of the FeII(LBA)/H2O2 reaction occurs via FeIVO intermediates not trapped by t-butanol or dmso, but intercepted by primary and secondary alcohols. The HO. generating pathways are responsible for a competitive LBA ligand oxidation at the C-2 position via HO., formed from FeII(LBA) and H2O2 within the original reaction cage. Competitive ligand oxidation at C-2 is absent for the FeII(LBA)/O2 autoxidation, indicative of a different redox mechanism. The FeII(LBA)/O2 reaction rate is first-order in each component and is insensitive to the presence of t-butanol as an HO. trap. These observations support a ferryl intermediate in the autoxidation pathway and the absence of HO. or free H2O2 during autoxidation. Although chelation of FeII by hard ligand donors such as edta4-, Cl-, or HPO4(2-) accelerate the rate of autoxidation of FeII, chelation of carboxylate, alkoxy, and hydroxyl donors of LBA does not accelerate autoxidation. The implications of these findings, and the absence of an inner-sphere coordination role of the 4-beta-(galactosido) functionality toward the action of LBA in organ preservant fluids, are discussed.

Journal Article

Abstract  About twenty years ago, the cofactor pyrroloquinoline quinone, PQQ, was discovered. Here the author gives his personal view on the reasons why this cofactor was so lately discovered and how the steps in its identification were made. The discovery not only led to subsequent studies on the physiological significance of PQQ but also initiated investigations on other enzymes where the presence of PQQ was expected, resulting in the discovery of three other quinone cofactors, TPQ, TTQ, and LTQ, which differ from PQQ as they are part of the protein chain of the enzyme to which they belong. Enzymes using quinone cofactors, the so-called quinoproteins, copper-quinoproteins, and quinohemoproteins, are mainly involved in the direct oxidation of alcohols, sugars, and amines. Some of the PQQ-containing ones participate in incomplete bacterial oxidation processes like the conversion of ethanol into vinegar and of D-glucose into (5-keto)gluconic acid. Soluble glucose dehydrogenase is the sensor in diagnostic test strips used for glucose determination in blood samples of diabetic patients. Quinohemoprotein alcohol dehydrogenases have an enantiospecificity suited for the kinetic resolution of racemic alcohols to their enantiomerically pure form, certain enantiomers being interesting candidates as building block for synthesis of high-value-added chemicals. Making up for balance after twenty years of quinoprotein research, the following conclusions can be drawn: since quinoproteins do not catalyze unique reactions, we know now that there are more enzymes which catalyze one and the same reaction than we did before, but do not understand the reason for this (compare e.g. NAD/NADP-dependent glucose dehydrogenases, flavoprotein glucose oxidase/dehydrogenase, and soluble/membrane-bound, PQQ-containing glucose dehydrogenases, enzymes all catalyzing the oxidation of beta-D-glucose to delta-gluconolactone but being quite different from each other); however, taking a pragmatic point of view, the foregoing can also be regarded as a positive development since as illustrated by the examples given above, the enlargement of the catalytic arsenal with quinoprotein enzymes provides in more possibilities for enzyme applications; the hopes that PQQ could be a new vitamin have diminished strongly after it has become clear that its occurrance is restricted to bacteria; the impact factor is broader than just the development of the field of quinoproteins, since together with that of enzymes containing a one-electron oxidized amino acid residue as cofactor, it has emphasized that cofactors not only derive from nucleotides (e.g. FAD, NAD) but also from amino acids. Finally, strong indications exist to assume that this is not the end of the story since other quinone cofactors seem awaiting their discovery.

Journal Article

Abstract  1. Although calcium gluconate (CG) is recommended in the treatment of hydrofluoric acid (HF) eye burn its efficacy seems to be controversial, and controlled human or animal studies are limited. The study's objective is to compare the efficacy of 1% CG and normal saline irrigation for the treatment of HF eye injury in animals. 2. 0.05 ml 2% HF was instilled to anesthetized rabbit's eyes. One minute later, four treatment groups were studies: (1) irrigation with normal saline followed by topical antibiotics, corticosteroids and cycloplegics for 48 h (n = 10); (2) irrigation with 1% CG followed by the same topical treatment (n = 9); (3) as group 1 and 1% CG drops over 48 h (n = 10); (4) as group 3, and injection of 1% CG subconjunctivally after irrigation (n = 9). 3. Corneal erosion area, corneal haziness, conjunctival status, vascularization (pannus) and acidity were assessed before injury, immediately after initial treatment and 1, 2, 7 and 14 days thereafter by slit lamp aided by fluorescein staining. 4. Conjunctival pH dropped from 6.0-6.5 to 2.5-3 after injury and increased to 6-6.5 after irrigation. Corneal erosion: smaller in groups 2, 3, significantly so at 2 days, but not different at 14 days. Corneal haziness: more severe in group 4, at 14 days, insignificant. Conjunctival damage: significantly worse in group 4 at 2, 7 and 14 days. Pannus appeared in 2-4 eyes in each group. 5. It seems that for HF injury 1% CG did not have any significant advantage over saline irrigation and topical treatment only. It might have some initial and temporary effect on healing process especially that involving erosion. Given subconjunctivally, 1% CG may be toxic and worsens clinical outcome.

Journal Article

Abstract  We assessed mechanisms of acetylcholine- and bradykinin-induced relaxations in human omental resistance vessels. Ring segments (approximately 200 microns normalized ID) were dissected from omental biopsies obtained from women at laparotomy (nonpregnant) or at cesarean delivery (pregnant) and were studied under isometric conditions in a Mulvany-Halpern myograph. All arginine vasopressin-preconstricted vessels relaxed in a strictly endothelium-dependent manner to acetylcholine and bradykinin; maximal relaxations were not decreased by either NG-nitro-L-arginine or indomethacin. By contrast, bradykinin failed to relax vessels that had been preconstricted with potassium gluconate. In the combined presence of NG-nitro-L-arginine and indomethacin, addition of charybdotoxin, a selective antagonist of some calcium-sensitive potassium channels, did not inhibit maximal bradykinin-induced relaxation. By contrast, addition of 10 mmol/L tetraethylammonium chloride abolished relaxation in vessels from nonpregnant women but not in vessels from gravidas. We conclude that bradykinin relaxes these human resistance arteries in an endothelium-dependent but predominantly nitric oxide- and prostanoid-independent manner; relaxation likely depends on the action of an endothelium-derived hyperpolarizing vasodilator. Furthermore, in striking contrast to mechanistic insights from animal studies, human pregnancy appears to augment a mechanism of endothelium-dependent relaxation in these vessels that is insensitive to the inhibitors noted above. Whether a similar novel vasodilator mechanism in vivo contributes to the physiological vasodilation that characterizes human gestation or whether failure of such a mechanism might lead to preeclampsia remains the subject of future study.

Journal Article

Abstract  Membrane-integrated quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus was produced by heterologous expression of the gene for it in an Escherichia coli recombinant strain. The apoenzyme (lacking the cofactor pyrroloquinoline quinone, PQQ) was solubilized with Triton X-100 and purified to homogeneity. Reconstitution of the apoenzyme to full activity in the assay was achieved with a stoichiometric amount of PQQ in the presence of Mg2+. Just as for other PQQ-containing dehydrogenases where Ca2+ fulfills this role, Mg2+ anchors PQQ to the mGDH protein and activates the bound cofactor. This occurs in a precise way since high anomer specificity was found for the enzyme toward the sugars tested. Although the steady-state-type kinetics were as expected for a dye-linked dehydrogenase (ping-pong) and the PQQ in it was present in oxidized form, addition of glucose to the holoenzyme resulted in a very slow but continuous production of gluconolactone; i.e., the reaction did not stop after one turnover, with O2 apparently acting as an (albeit poor) electron acceptor by reoxidizing PQQH2 in the enzyme. The surprisingly low reactivity with glucose, in the absence of dye, as compared to the activity observed in the steady-state assay appeared to be due to formation of an anomalous enzyme form, mGDH. Formation of normal holoenzyme, mGDH, reducing added glucose immediately to gluconolactone (in one turnover), was achieved by treating mGDH with sulfite, by reconstituting apoenzyme with PQQ in the presence of sulfite, or by applying assay conditions to mGDH (addition of PMS/DCPIP). As compared to other quinoprotein dehydrogenases, mGDH appears to be unique with respect to the mode of PQQ-binding, as expressed by the special conditions for reconstitution and the absorption spectra of the bound cofactor, and the reactivity of the reduced enzyme toward O2. The primary cause for this seems not to be related to a different preference for the activating bivalent metal ion but to the special way of binding of PQQ to mGDH.

Journal Article

Abstract  The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30 degrees C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35 degrees C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively.

Journal Article

Abstract  A new family of activated glycosidic compounds has been designed and synthesized: (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2-nitrophenylmethane (1). It is stable in conditions commonly used for synthesis, and it can be converted to a sugar lactone derivative merely by photoirradiation (λ=365 nm): 2,3,4,6-tetra-O-acetyl-D-glucono-1,5-lactone (2). A mechanism for the reaction is proposed. The photochemical conversion of 1 in the presence of methanol has also been demonstrated, giving rise to methyl 2,3,4,6-tetra-O-acetyl-D-gluconate (3).

Journal Article

Abstract  Butyrate has an antitumorigenic effect on colorectal cancer cell lines. Dietary sodium gluconate (GNA) promotes butyrate production in the large intestine. Accordingly, we examined the effect of dietary GNA on tumorigenesis in the large intestine in rats. Male Fisher-344 rats (n = 32) were divided into 4 groups: 2 diets (with or without 50 g GNA/kg basal diet) X 2 treatments (with or without carcinogen administration). Colonic tumors were induced by 3 intraperitoneal injections of azoxymethane (115 mg/kg body wt, 1 time/wk) and dietary deoxycholic acid (2 g/kg basal diet). The experiment was conducted for 33 wk except for a few rats. Ingestion of GNA increased cecal butyrate concentration at the end of experiment (P < 0.01). No tumor development occurred in the untreated groups. Ingestion of GNA decreased the incidence of tumors in rats administered the carcinogen (37.5 vs. 100%, P < 0.05). Ingestion of GNA also decreased the mean number of tumors per rat (0.5 +/- 0.8 vs. 2.8 +/- 1.5, P < 0.01). beta-Catenin accumulation and TdT-mediated dUTP nick end labeling (TUNEL) positive cells in tumors were histochemically examined. The results of this study suggested that the antitumorigenic effect of GNA may involve the stimulation of apoptosis through enhanced butyrate production in the large intestine.

Journal Article

Abstract  The Na(+)/H(+) exchanger has been the only unequivocally demonstrated H(+)-transport mechanism in the synaptosomal preparation. We had previously suggested that a Cl(-)-H(+) symporter (in its acidifying mode) is involved in cytosolic pH regulation in the synaptosomal preparation. Supporting this suggestion, we now show that: (1) when synaptosomes are transferred from PSS to either gluconate or sulfate solutions, the Fura-2 ratio remains stable instead of increasing as it does in 50 mM K solution. This indicates that these anions do not promote a plasma membrane depolarization. (2) Based in the recovery rate from the cytosolic alkalinization, the anionic selectivity of the Cl(-)-H(+) symporter is NO(3)(-) > Br(-) > Cl(-) > I(-) = isethionate = sulfate = methanesulfonate = gluconate. (3) PCMB 10 muM inhibits the gluconate-dependent alkalinization by 30 +/- 6%. (4) Neither Niflumic acid, 9AC, Bumetanide nor CCCP inhibits the recovery from the cytosolic alkalinization.

WoS
Journal Article

Abstract  Ion channels from the midgut apical membrane of gypsy moth (Lymantria dispar) larvae were studied following mechanical fusion of brush-border membrane vesicles with planar phospholipid bilayer membranes. In symmetrical 300 mmol l(-)(1) KCl (pH 9.0), nine different channels with conductances ranging from 27 to 795 pS and linear current/voltage relationships were resolved. In the presence of a KCl gradient across the bilayer (450 mmol l(-)(1 )cis/150 mmol l(-)(1 )trans), 11 different conductance levels ranging from 16 to 850 pS were detected. The channels were slightly cationic: the zero-current reversal potential was shifted by -5 mV to -21 mV compared with symmetrical KCl conditions, corresponding to p(K)/p(Cl) permeability ratios of 1.5-8.0. Most channels were neither voltage-dependent nor Ca(2+)-sensitive and displayed complex gating kinetics. Addition of Ba(2+) or Cs(+) to both sides of the bilayer had little effect on channel activity, but fewer distinct channels were observed when KCl was replaced by potassium gluconate, suggesting an effect of Cl(-) on channel activity. A reduced number of channels was also detected when KCl was replaced by N-methyl- d-glucamine-HCl. Under asymmetrical N-methyl-d-glucamine-HCl conditions, only anionic channels were observed. They exhibited current rectification (35 pS at negative voltages and 81 pS at positive voltages) and were strongly voltage-dependent.

DOI
Journal Article

Abstract  Biomasses of methylotrophic bacteria, yielded by biotechnological processes as waste products, can represent a source of ubiquinones, especially of the ubiquinone-10. Possibilities for the separation of ubiquinones were studied on waste biomasses from the microbial production of gluconic acid, from the production of intracellular poly-beta-hydroxybutyric acid (PHB) and from the sewage treatment. The ubiquinones are extracted with supercritical CO2 in the presence of methanol or ethanol as entrainer. The separation of ubiquinones with supercritical extraction was more effective than with conventional extraction methods. The advantages are especially the low extract quantities and the high ubiquinone content in the extracts. The crude ubiquinones can be purified by using the preparative HPLC technique.

Journal Article

Abstract  75As NMR (Nuclear Magnetic Resonance) was used as a probe of arsenate interactions in solution. The linewidth at half-height of the 75As NMR signal of arsenate was studied as a function of solution pH and temperature. Below pH 11.5, the 75As signal was too broad to be detected, but at higher pH, up to pH = 13.5, the signal became much narrower. This indicates that the arsenate species AsO4(3-) is quite symmetric, but the asymmetry of HAsO4(2-) is sufficient to cause extensive quadrupolar relaxation of the 75As nucleus. A full pH range 75As and proton NMR study of the interaction of arsenate with ethanol, ethylene glycol, glycerol, ribose, mannose, glucose, gluconic acid and acetate was undertaken in order to follow arsenate ester formation. The 75As line broadening effects and the proton ligand shifts observed indicate that complexation of arsenate by ribose, mannose, glucose, ethanol, ethylene glycol, and glycerol occurs at pH 12.7. However, no significant interaction is detected by NMR with gluconic acid or acetate. The effect of the nucleoside adenosine is quite small and those of phosphate and of the nucleotides AMP and ADP are negligible. The interaction of arsenate with potential cationic centers, such as the basic amino acids lysine and arginine and some macrocyclic triamines, was also studied. Such interaction depends on the pKa for protonation of the amine groups.

Journal Article

Abstract  It is still a challenge to link specific metabolic activities to certain species in a microbial community because of methodological limitations. We developed a method to analyze the specific metabolic activity of a single bacterial species within a consortium making use of [(13)C(7)]-toluene for metabolic labelling of proteins. Labelled proteins were subsequently analyzed by 2D gel electrophoresis (2-DE) and mass spectrometry (MS) to characterize their identity as well as their (13)C content as an indicator for function and activity of the host organism. To establish this method, we analyzed the metabolic incorporation of (13)C carbon atoms into proteins of Aromatoleum aromaticum strain EbN1. This strain is capable of metabolizing toluene under nitrate-reducing conditions and was grown in either pure culture or in a mixed consortium with a gluconate-consuming enrichment culture. First, strain EbN1 was grown with non-labelled toluene or labelled [(13)C(7)]-toluene as carbon sources, respectively, and their proteins were subjected to 2-DE. In total, 60 unique proteins were identified by MALDI-MS/MS. From 38 proteins, the levels of (13)C incorporation were determined as 92.3+/-0.8%. Subsequently, we mixed strain EbN1 and the enrichment culture UFZ-1, which does not grow on toluene but on gluconate, and added non-labelled toluene, [(13)C(7)]-toluene and/or non-labelled gluconate as carbon sources. The isotope labelling of proteins was analyzed after 2-DE by MS as a quantitative indicator for metabolic transformation of isotopic-labelled toluene by the active species of the consortium. Incorporation of (13)C was exclusively found in proteins from strain EbN1 at a content of 82.6+/-2.3%, as an average calculated from 19 proteins, demonstrating the suitability of the method used to identify metabolic active species with specific properties within a mixed culture.

Journal Article

Abstract  We report a 27-week, 850 g infant with severe Streptococcus group B sepsis and life-threatening hyperkalemia due to progressive anuria. On the fourth day of life, after he failed treatment with diuretics, salbutamol, insulin, calcium gluconate and sodium bicarbonate, he was treated with sorbitol-free Kayexalate enemas. Potassium level slowly decreased from 9.2 mmol/l to normal level along with a recovery of normal urine output. On the 11th day of life, clinical and radiological signs of a perforated necrotizing enterocolitis (NEC) occurred and the patient required surgical intestinal resection. Histologic examination of the ileum specimen revealed areas of necrosis with fibrosis and giant cell reaction to a nonpolarizable material consistent with sodium polystyrene sulfonate. Usually, Kayexalate is suspended in hyperosmolar sorbitol solutions and the elevated osmolarity seems to be responsible for hemorrhagic colitis, transmural necrosis and definitely NEC. Our case report shows that Kayexalate per se, and not necessarily suspended in sorbitol, can lead to gastrointestinal tract complications and NEC in preterm infants.

Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. Aluminum (Al), one of the most widespread element on earth, often contaminates preparations such as parenteral nutrition solutions. Small-volume additives such as calcium gluconate and phosphate salts solutions are the most contaminated. Large-volume parental source solutions such as dextrose, crystalline amino acids and lipid emulsions are significantly less contaminated. Premature infants generally need intravenous feeding and are therefore vulnerable to aluminum toxicity: protective gastrointestinal mechanisms are bypassed and renal function is immature. Several studies showed that Al blood levels and urinary excretion increase when premature infants received parenteral nutrition. Urinary elimination is not adequate and Al accumulation is observed in tissues, especially in bones. Recently, in preterm infants, prolonged intravenous feeding with solutions containing Al was demonstrated to be associated with impaired neurologic development. Montreuil Hospital intensive c

Journal Article

Abstract  In this study, an attempt was made to identify an effective phosphate solubilizing bacteria from pesticide polluted field soil. Based on the formation of solubilization halo on Pikovskaya's agar, six isolates were selected and screened for pesticide tolerance and phosphate (P) solubilization ability through liquid assay. The results showed that only one strain (SGRAJ09) obtained from Achillea clavennae was found to tolerate maximum level of the pesticides tested and it was phylogenetically identified as Pseudomonas sp. It possessed a wide range of pesticide tolerance, ranging from 117 μg mL(-1) for alphamethrin to 2,600 μg mL(-1) for endosulfan. The available P concentrations increased with the maximum and double the maximum dose of monocrotophos and imidacloprid, respectively. On subjected to FT-IR and HPLC analysis, the presence of organic acids functional group in the culture broth and the production of gluconic acid as dominant acid aiding the P solubilization were identified. On comparison with control broth, monocrotophos and imidacloprid added culture broth showed quantitatively high organic acids production. In addition to gluconic acid production, citric and acetic acids were also observed in the pesticide amended broth. Furthermore, the Pseudomonas sp. strain SGRAJ09 possessed all the plant growth promoting traits tested. In presence of monocrotophos and imidacloprid, its plant growth promoting activities were lower than that of the pesticides unamended treatment.

Journal Article

Abstract  Graphene, one of the most attractive two-dimensional nanomaterials, has demonstrated a broad range of applications because of its excellent electronic, mechanical, optical, and chemical properties. In this work, a general, environmentally friendly, one-pot method for the fabrication of reduced graphene oxide (RGO)/metal (oxide) (e.g., RGO/Au, RGO/Cu2O, and RGO/Ag) composties was developed using glucose as the reducing agent and the stabilizer. The glucose not only reduced GO effectively to RGO but also reduced the metal precursors to form metal (oxide) nanoparticles on the surface of RGO. Moreover, the RGO/metal (oxide) composites were stabilized by gluconic acid on the surface of RGO. The developed RGO/metal (oxide) composites were characterized using STEM, FE-SEM, EDS, UV-vis absorption spectroscopy, XRD, FT-IR, and Raman spectroscopy. Finally, the developed nanomaterials were successfully applied as an electrode catalyst to simultaneous electrochemical analysis of l-ascorbic acid, dopamine, and uric acid.

Journal Article

Abstract  Three phosphate-solubilizing fungi, identified as Penicillium expansum, Mucor ramosissimus, and Candida krissii, were isolated from phosphate mines (Hubei, People's Republic of China) and characterized. All the isolates demonstrated diverse levels of phosphate-solubilizing capability in National Botanical Research Institute's phosphate growth medium containing rock phosphate as sole phosphate source. Acidification of culture medium seemed to be the main mechanism for rock phosphate solubilization. Indeed, citric acid, oxalic acid, and gluconic acid were shown to be present in the culture medium inoculated with these isolates. Moreover, the isolates produced acid and alkaline phosphatases in culture medium, which may also be helpful for RP solubilization. A strong negative correlation between content of soluble phosphorus and pH (r = - 0.89; p < 0.01) in culture medium was observed in this study. All the isolates promoted growth, soil available phosphorus, phosphorus, and nitrogen uptake of wheat seedling in field soil containing rock phosphate under pot culture conditions, thus demonstrating the capability of these isolates to convert insoluble form of phosphorus into plant available form from rock phosphate, and therefore hold great potential for development as biofertilizers to enhance soil fertility and promote plant growth.

Journal Article

Abstract  Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL/6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation.

Journal Article

Abstract  Synthesis of 2-deoxy-1-thioglycosides from glycals, mediated by catalytic amounts of ceric ammonium nitrate is reported. Apart from the 2-deoxy-1-thioglycosides, formation of the 2,3-unsaturated enose, corresponding to the Ferrier product, is also observed, especially for the glucal substrates. A radical oxocarbenium ion and a thiolate intermediates are most likely to mediate the reaction. Upon synthesis of 2-deoxy-1-thioglycosides, few representative glycosylation reactions with both aglycosyl and glycosyl acceptors were performed and alpha-anomeric 2-deoxy glycosides were obtained exclusively.

Journal Article

Abstract  Water soluble porphyrins have many perfect analytical figures of merit. A water-soluble sulfonated porphyrin (H2TEHPPS) was used to build a novel platform for sensitive assays of hydrogen peroxide and glucose based on the different effects of Fe(2+) and Fe(3+) on H2TEHPPS. H2O2 or Fe(2+) alone cannot induce a fluorescence change in H2TEHPPS, but Fe(3+) can quench the fluorescence of H2TEHPPS significantly. Interestingly, glucose is oxidized to gluconolactone by GOD and generates an equivalent hydrogen peroxide, and the produced H2O2 also oxidizes Fe(2+) to Fe(3+) and causes the fluorescence quenching of H2TEHPPS. According to this, a sensitive sensor for hydrogen peroxide and glucose has been demonstrated, which can determine H2O2 and glucose in a relative simple and sensitive way. The detection limits were 1.3 × 10(-7) M and 3.2 × 10(-7) M for H2O2 and glucose, respectively. In addition, the glucose in serum samples was determined successfully using this sensing platform. It is also noteworthy that H2O2 can be released in almost all oxidations catalyzed by oxidases, which suggests that this newly proposed H2O2 probe can be readily extended to sense other oxidases and their specific substrates.

Journal Article

Abstract  This study aimed to evaluate the effect of Datura stramonium on rats by examining the differences in urine and serum metabolites between Datura stramonium groups and control group. SIMCA-P+12.0.1.0 software was used for partial least-squares discriminant analysis (PLS-DA) to screen for the differential metabolites. Fifteen metabolites in urine including malonic acid, pentanedioic acid, D-xylose, D-ribose, xylulose, azelaic acid, threitol, glycine, butanoic acid, D-mannose, D-gluconic acid, galactonic acid, myo-inositol, octadecanoic acid, pseudouridine and ten metabolites in serum including alanine, butanedioic acid, L-methionine, propanedioic acid, hexadecanoic acid, D-fructose, tetradecanoic acid, D-glucose, D-galactose, oleic acid were selected as the characteristic metabolites. The PLS-DA scores plot indicated that serum and urine metabolites have a variety of changes among low dose group, high dose group and control group. These metabolites were related with amino metabolism, lipid metabolism and energy metabolism. The result reflected the relationship between metabolites in rat fluid and Datura stramonium spectra. Potential differences in metabolites and metabolic pathway analysis showed that the establishment of urine and serum metabolomics methods for further evaluating drug has great significance.

Journal Article

Abstract  The aim of this study was to investigate the effect of gluconic acid (GA) conjugation on the biodistribution of cysteamine-capped quantum dots (amino-QDots) in vivo. Cadmium selenide/zinc sulfide (CdSe/ZnS) was capped with cysteamine through a thiol exchange method, and different amounts of GA were conjugated to the amine groups of cysteamine via the formation of an amide bond. The emission maxima of the synthesized QDots, the amino-QDots and the GA-conjugated amine-QDots (GA-QDots) were located at 720, 600 and 610 nm, respectively. In the cell viability studies, the GA-QDots showed very low toxicity against CHO cells as compared to the cytotoxicity of the amino-QDots. The QDots were next intravenously injected into normal mice and then we performed ex vivo optical imaging. The majority of the amino-QDots were accumulated in the lung. In contrast, the GA-QDots were cleared out of the body through the kidney. Therefore, we expect that the conjugation of GA onto the amino-QDots can create opportunities for using amino-QDots for in vivo imaging.

Journal Article

Abstract  Glucose oxidase (GOX) can convert glucose into gluconic acid and hydrogen peroxide (H2O2), which is potentially useful for synergistic cancer-starving and oxidation therapy. Herein we demonstrate a glucose-responsive nanomedicine made of GOX-polymer nanogels to regulate H2O2 production for synergistic melanoma starving and oxidation therapy. GOX-polymer nanogels showed glucose-responsive H2O2-generating activity in vitro, improved stability, and considerably enhanced tumor retention as compared to native GOX. More importantly, they exhibited high antimelanoma efficacy and no obvious systemic toxicity, whereas native GOX was ineffective and systemically toxic at the same dose. This work paves the way for establishing an endogenous and noninvasive cancer treatment paradigm that is based on intratumoral glucose-responsive, H2O2-generating chemical reactions.

  • <<
  • 1 of 122
  • >>
Filter Results