EPA MPPD

Project ID

2944

Category

Other

Added on

May 27, 2020, 7:32 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  BACKGROUND: Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood.

METHOD: In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition.

RESULTS: A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry).

CONCLUSIONS: To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.

Journal Article

Abstract  An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organization of regulatory relevance. Systematic organization of information into AOP frameworks has potential to improve regulatory decision-making through greater integration and more meaningful use of mechanistic data. However, for the scientific community to collectively develop a useful AOP knowledgebase that encompasses toxicological contexts of concern to human health and ecological risk assessment, it is critical that AOPs be developed in accordance with a consistent set of core principles. Based on the experiences and scientific discourse among a group of AOP practitioners, we propose a set of five fundamental principles that guide AOP development: (1) AOPs are not chemical specific; (2) AOPs are modular and composed of reusable components-notably key events (KEs) and key event relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks composed of multiple AOPs that share common KEs and KERs are likely to be the functional unit of prediction for most real-world scenarios; and (5) AOPs are living documents that will evolve over time as new knowledge is generated. The goal of the present article was to introduce some strategies for AOP development and detail the rationale behind these 5 key principles. Consideration of these principles addresses many of the current uncertainties regarding the AOP framework and its application and is intended to foster greater consistency in AOP development.

Journal Article

Abstract  This work summarizes what is known about the role of fiber durability/biopersistence of silica-based synthetic vitreous fibers (SVFs) and their influence on toxicology. The article describes the key processes leading from exposure to biological effect, including exposure, pulmonary deposition, clearance by various mechanisms, accumulation in the lung, and finally possible biological effects. The dose-dimension-durability paradigm is used to explain the key determinants of SVF toxicology. In particular, the key role played by the durability/biopersistence of long (>20microm) fibers is highlighted. Relevant literature on the prediction of in-vitro dissolution rates from chemical composition is summarized. Data from in-vitro and in-vivo durability/biopersistence tests show that these measures are highly correlated for long fibers. Both durability and biopersistence are correlated with the outcome of chronic inhalation bioassays. A schematic approach is presented for the design and testing of new SVFs with lower biopersistence.

Journal Article

Abstract  The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates.

DOI
Journal Article

Abstract  Computational fluid dynamics (CFD) simulations were conducted in a model of the complete nasal passages of an adult male Sprague-Dawley rat to predict regional deposition patterns of inhaled particles in the size range of 1 nm to 10 pm. Steady-state inspiratory airflow rates of 185, 369, and 738 ml/min (equal to 50%, 100%, and 200% of the estimated minute volume during resting breathing) were simulated using Fluent (TM). The Lagrangian particle tracking method was used to calculate trajectories of individual particles that were passively released from the nostrils. Computational predictions of total nasal deposition compared well with experimental data from the literature when deposition fractions were plotted against the Stokes and Peclet numbers for micro- and nanoparticles, respectively. Regional deposition was assessed by computing deposition efficiency curves for major nasal epithelial cell types. For micrometer particles, maximum olfactory deposition was 27% and occurred at the lowest flow rate with a particle diameter of 7 mu m. Maximum deposition on mucus-coated non-olfactory epithelium was 27% for 3.25 mu m particles at the highest flow rate. For submicrometer particles, olfactory deposition reached a maximum of 20% with a particle size of 5 nm at the highest flow rate, whereas deposition on mucus-coated non-olfactory epithelium reached a peak of approximately 60% for 1-4 nm particles at all flow rates. These simulations show that regional particle deposition patterns are highly dependent on particle size and flow rate, indicating the importance of accurate quantification of deposition in the rat for extrapolation of results to humans. (C) 2011 Elsevier Ltd. All rights reserved.

Journal Article

Abstract  Workplace air is monitored for overall dust levels and for specific components of the dust to determine compliance with occupational and workplace standards established by regulatory bodies for worker health protection. Exposure monitoring studies were conducted by the International Copper Association (ICA) at various industrial facilities around the world working with copper. Individual cascade impactor stages were weighed to determine the total amount of dust collected on the stage, and then the amounts of soluble and insoluble copper and other metals on each stage were determined; speciation was not determined. Filter samples were also collected for scanning electron microscope analysis. Retrospectively, there was an interest in obtaining estimates of alveolar lung burdens of copper in workers engaged in tasks requiring different levels of exertion as reflected by their minute ventilation. However, mechanistic lung dosimetry models estimate alveolar lung burdens based on particle Stoke's diameter. In order to use these dosimetry models the mass-based, aerodynamic diameter distribution (which was measured) had to be transformed into a distribution of Stoke's diameters, requiring an estimation be made of individual particle density. This density value was estimated by using cascade impactor data together with scanning electron microscopy data from filter samples. The developed method was applied to ICA monitoring data sets and then the multiple path particle dosimetry (MPPD) model was used to determine the copper alveolar lung burdens for workers with different functional residual capacities engaged in activities requiring a range of minute ventilation levels.

Journal Article

Abstract  This paper reviews how aerosol exposure assessment, for people in both working and living environments, has evolved over the years. It charts the main scientific developments that led to progressively improved ways of thinking and methods to assess exposure to airborne particulate matter in a manner more relevant to human health. It has been a long scientific journey as one generation of pioneering contributors has handed off to the next. In the process a consistent rationale has emerged, producing aerosol sampling criteria--and in turn exposure standards--which have been increasingly relevant to actual human exposures. The journey continues as a new generation of scientists steps up to deal with the new challenges that are emerging. An appreciation of the history of what went before is essential to charting the most effective path looking forward.

Journal Article

Abstract  ZnO nanoparticles (ZnO-NPs) are widely used in the engineering and cosmetic industries, and inhaled airborne particles pose a known hazard to human health; their translocation into humans is a recognized public health concern. The pulmonary-blood pathway for ZnO-NP toxicity is well documented, but whether translocation of these particles can also occur via an olfactory bulb-brain route remains unclear. The potential toxicity of ZnO-NPs for the human central nervous system (CNS) is predicated on the possibility of their translocation. Our study investigated translocation of ZnO-NPs both in vitro using the neuronal cell line PC12 and in vivo in a Sprague-Dawley rat model. Our findings indicate that the zinc-binding dye, Newport-Green DCF, binds ZnO stoichiometrically and that ZnO-NP concentration can therefore be measured by the fluorescence intensity of the bound dye in confocal fluorescence microscopy. Confocal data obtained using Newport-Green DCF-2 K(+)-conjugated ZnO-NPs along with the membrane probe FM1-43 demonstrated endocytosis of ZnO-NPs by PC12 cells. In addition, Fluozin-3 measurement showed elevation of cytosolic Zn(2+) concentration in these cells. Following in vivo nasal exposure of rats to airborne ZnO-NPs, olfactory bulbs and brains that were examined by Newport-Green fluorescence and TEM particle measurement clearly showed the presence of ZnO-NPs in brain. We conclude that an olfactory bulb-brain translocation pathway for airborne ZnO-NPs exists in rats, and that endocytosis is required for interneuron translocation of these particles.

Journal Article

Abstract  Background: A validated method to predict lung deposition for inhaled medication from in vitro data is lacking in spite of many attempts to correlate in vitro and in vivo outcomes. By using an in vivo-like in vitro setup and analyzing inhalers from the same batches, both in vitro and in vivo, we wanted to create a situation where information from the in vitro and in vivo outcomes could be analyzed at the same time. Method: Nine inhalation products containing either budesonide or AZD4818 were evaluated. These comprised two pressurized metered dose inhalers (pMDIs), a pMDI plus a spacer, four dry powder inhalers, and two dosimetric nebulizers. In vitro, an in vivo-like setup consisting of anatomically correct inlet throats were linked to a flow system that could replay actual inhalation flow profiles through the throat to a filter or to an impactor. In vivo, total lung deposition was measured in healthy adults by pharmacokinetic methods. Results and Conclusion: We could show that the amount of drug escaping filtration in a realistic throat model under realistic delivery conditions predicts the typical total lung deposition in trained healthy adult subjects in the absence of significant exhaled mass. We could further show that by using combinations of throat models and flow profiles that represent realistic deviations from the typical case, variations in ex-cast deposition reflect between-subject variation in lung deposition. Further, we have demonstrated that ex-cast deposition collected either by a simple filter or by a cascade impactor operated at a fixed flow rate using a mixing inlet, to accommodate a variable flow profile through the inhaler, predicts equally well the lung deposited dose. Additionally, the ex-cast particle size distribution measured by this method may be relevant for predicting exhaled fraction and regional lung deposition by computational models.

Journal Article

Abstract  The inhalation and the deposition of welding-generated ultrafine particles in welders' respiratory tracts have been linked to severe pulmonary impairments. In the present study, a mobile aerosol lung deposition apparatus (MALDA) was developed and applied to study the respiratory deposition of ultrafine welding fume particles. The MALDA was constructed with a set of physiologically representative human tracheobronchial airway replicas made with high-resolution 3D printers. Ultrafine welding fume particles were generated in a welding fume chamber and delivered to the MALDA. A series of respiratory deposition experiments were carried out using the MALDA to investigate the deposition of ultrafine welding fume particles in different airway generations of the tracheobronchial airways. The results showed that the fractional deposition of ultrafine welding fume particle in the human tracheobronchial airways down to the 9th airway generation could be readily and systematically measured by the MALDA. The estimated cumulative respiratory deposition ranged from approximately 9-31% for ultrafine welding fume particles between 10 and 100 nm in diameter. The results acquired demonstrated that the MALDA developed has the potential to become a useful apparatus in the future to estimate the respiratory deposition of ultrafine particles in real workplaces.

Journal Article

Abstract  Advancements in measurement technologies and modeling capabilities continue to result in an abundance of exposure information, adding to that currently in existence. However, fragmentation within the exposure science community acts as an obstacle for realizing the vision set forth in the National Research Council's report on Exposure Science in the 21st century to consider exposures from source to dose, on multiple levels of integration, and to multiple stressors. The concept of an Aggregate Exposure Pathway (AEP) was proposed as a framework for organizing and integrating diverse exposure information that exists across numerous repositories and among multiple scientific fields. A workshop held in May 2016 followed introduction of the AEP concept, allowing members of the exposure science community to provide extensive evaluation and feedback regarding the framework's structure, key components, and applications. The current work briefly introduces topics discussed at the workshop and attempts to address key challenges involved in refining this framework. The resulting evolution in the AEP framework's features allows for facilitating acquisition, integration, organization, and transparent application and communication of exposure knowledge in a manner that is independent of its ultimate use, thereby enabling reuse of such information in many applications.

Journal Article

Abstract  Developing detailed lung airway models is an important step towards understanding the respiratory system. While modern imaging and airway casting approaches have dramatically improved the potential detail of such models, challenges have arisen in image processing as the demand for greater detail pushes the image processing approaches to their limits. Airway segmentations with proper topology have neither loops nor invalid voxel-to-voxel connections. Here we describe a new technique for segmenting airways with proper topology and apply the approach to an image volume generated by magnetic resonance imaging of a silicone cast created from an excised monkey lung.

Journal Article

Abstract  Inhalation exposure to some types of fibers (e.g., asbestos) is well known to be associated with respiratory diseases and conditions such as pleural plaques, fibrosis, asbestosis, lung cancer, and mesothelioma. In recent years, attention has expanded to other types of elongate mineral particles (EMPs) that may share similar geometry with asbestos fibers but which may differ in mineralogy. Inhalability, dimensions and orientation, and density are major determinants of the aerodynamic behavior for fibers and other EMPs; and the resultant internal dose is recognized as being the critical link between exposure and pathogenesis. Insufficient data are available to fully understand the role of specific physicochemical properties on the potential toxicity across various types of fiber materials. While additional information is required to assess the potential health hazards of EMPs, dosimetry models are currently available to estimate the initially deposited internal dose, which is an essential step in linking airborne exposures to potential health risks. Based on dosimetry model simulations, the inhalability and internal dose of EMPs were found to be greater than that of spherical particles having the same mass or volume. However, the complexity of the dependence of internal dose on EMPs dimensions prevented a straightforward formulation of the deposition-dimension (length or diameter) relationship. Because health outcome is generally related to internal dose, consideration of the factors that influence internal dose is important in assessing the potential health hazards of airborne EMPs.

DOI
Journal Article

Abstract  Increased use of electronic cigarette (EC) products has called for studying the health consequences from these new products. Government agencies such as the FDA are interested in toxicological, exposure data and other relevant information as a part of regulating the use of the products. A key step in risk assessment of EC products is to determine the inhaled dose of various constituents in the EC aerosol. Given the challenges in collecting human and animal data, mathematical models may guide and complement data collection. Models developed for combustible tobacco smoke may be improved and extended to EC aerosol to allow for higher volatility and hygroscopicity of the latter. Both these properties greatly affect the dynamics and deposition of inhaled aerosol. In this study, we developed a deposition model for EC aerosol based on realistic vaping scenarios. The model included several steps representing puff withdrawal into the oral cavity, mouth hold, dilution of the EC puff in the mouth with the subsequent dilution from inhaled air, inhalation of the puff into the lower respiratory tract, lung-hold, and exhalation. Results for deposition of individual constituents and droplet dynamics within the oral cavity of the respiratory tract will be presented in this publication. The model accounted for thermodynamic interactions between the droplet and vapor phases of each constituent in the aerosol mixture. Deposition from droplets and uptake of vapor constituents were calculated. The deposited mass fraction for each vapor constituent and droplets were also calculated based on the total mass of the inhaled constituents. The inhalation model developed in this study could help the academics, government agencies and tobacco manufacturers with development of risk models for EC use.

Journal Article

Abstract  Drugs are given intranasally for both local and systemic applications, and the use of the intranasal route is predicted to rise dramatically in the next 10 years. Nasal drug delivery may be assessed by a variety of means, but high reliance is often placed upon in vitro testing methodology (emitted dose, droplet or particle size distribution, spray pattern, and plume geometry). Spray pattern and plume geometry define the shape of the expanding aerosol cloud, while droplet size determines the likelihood of deposition within the nasal cavity by inertial impaction. Current FDA guidance recommends these methods as a means of documenting bioavailability (BA) and bioequivalence (BE) for topically acting solution formulations, because they can be performed reproducibly and are more discriminating among products. Nasal drug delivery in vivo may be determined by several radionuclide imaging methods: the two-dimensional imaging technique of gamma scintigraphy has been used most widely, but the three-dimensional method of positron emission tomography (PET) is being used increasingly often. In some situations a good in vitro/in vivo correlation (IVIVC) exists; for instance, negligible penetration into the lungs has been demonstrated in the case of nasal pump sprays delivering large droplets, while a clear difference may be shown in intranasal deposition between two aerosols with markedly different size distributions. However, recent studies have shown a poorer IVIVC for two similar nasal pump sprays, where significant differences in in vitro parameters were not reflected in differences in nasal deposition in vivo. It is suggested that radionuclide imaging data may have an important role to play as an adjunct to in vitro testing in BA and BE assessments and may provide a clearer understanding of the changes in in vitro parameters that are important for predicting differences in in vivo performance.

DOI
Book/Book Chapter

Abstract  This chapter discusses the external anatomy, musculoskeletal system, and behavior of the guinea pigs. The domestic guinea pig is a descendant of the wild cavy (Cavia aperea), which is a common rodent in South America. It is a nonburrowing, herbivorous, crepuscular, hystricomorph (porcupine-like) rodent with a stocky body, short neck and limbs, and with either no tail or a vestigial one. This rodent is more closely related to chinchillas and porcupines than to mice and rats. The adult male weighs between 900 and 1200 gm and the smaller female weighs between 700 and 900 gm, except during pregnancy. Their lifespan ranges from 2–8 years with the breeding female having the shorter lifespan. The hair consists of large guard hair and a finer hair undercoat. The ear has cartilaginous and osseous sections, and the nose is a triangular shaped structure, which consists of two nares with hairless perimeters. Both the male and female guinea pigs have a single pair of mammary nipples located in the inguinal area. The skeletal system consists of the axial portion (head, hyoid apparatus, ribs and sternum, vertebrae); the appendicular portion, consisting of the pectoral and pelvic girdles and limbs; and the heterotopic portion, which includes the os penis and sesmoids. Wild cavies of the genus Cavia are social animals that live in small groups of 5–10 in burrows or crevice shelters. In wild cavies neither sex is known to maintain an exclusive territory, but scent marking by secretions of the anal and supracaudal glands and urine to delineate territory has been documented elsewhere in domesticated guinea pigs.

Journal Article

Abstract  Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of the Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.

Journal Article

Abstract  Chemical risk assessors use physiologically based pharmacokinetic (PBPK) models to perform dosimetric calculations, including extrapolations between exposure scenarios, species, and populations of interest. Assessors should complete a thorough quality assurance (QA) review to ensure biological accuracy and correct implementation prior to using these models. This process can be time-consuming, and we developed a PBPK model template that allows for faster, more efficient QA review. The model template consists of a single model "superstructure" with equations and logic commonly found in PBPK models, allowing users to implement a wide variety of chemical-specific PBPK models. QA review can be completed more quickly than for conventional PBPK model implementations because the general model equations have already been reviewed and only parameters describing chemical-specific model and exposure scenarios need review for any given model implementation. We have expanded a previous version of the PBPK model template by adding features commonly included in PBPK models for volatile organic compounds (VOCs). We included multiple options for representing concentrations in blood, describing metabolism, and modeling gas exchange processes to allow for inhalation exposures. We created PBPK model template implementations of published models for seven VOCs: dichloromethane, methanol, chloroform, styrene, vinyl chloride, trichloroethylene, and carbon tetrachloride. Simulations performed using our template implementations matched published simulation results to a high degree of accuracy (maximum observed percent error: 1%). Thus, the model template approach can now be applied to a broader class of chemical-specific PBPK models while continuing to bolster efficiency of QA processes that should be conducted prior to using models for risk assessment applications.

Journal Article

Abstract  The respiratory system, the major route for entry of oxygen into the body, provides entry for external compounds, including pharmaceutic and toxic materials. These compounds (that might be inhaled under environmental, occupational, medical, or other situations) can be administered under controlled conditions during laboratory inhalation studies. Inhalation study results may be controlled or adversely affected by variability in four key factors: animal environment; exposure atmosphere; inhaled dose; and individual animal biological response. Three of these four factors can be managed through engineering processes. Variability in the animal environment is reduced by engineering control of temperature, humidity, oxygen content, waste gas content, and noise in the exposure facility. Exposure atmospheres are monitored and adjusted to assure a consistent and known exposure for each animal dose group. The inhaled dose, affected by changes in respiration physiology, may be controlled by exposure-specific monitoring of respiration. Selection of techniques and methods for the three factors affected by engineering allows the toxicologic pathologist to study the reproducibility of the fourth factor, the biological response of the animal.

Journal Article

Abstract  Nasal obstruction can be monitored objectively by measurement of nasal airflow, as evaluated by nasal peak flow, or as airways resistance/conductance as evaluated by rhinomanometry. Peak flow can be measured during inspiration or expiration. Of these measurements, nasal inspiratory peak flow is the best validated technique for home monitoring in clinical trials. The equipment is portable, relatively inexpensive, and simple to use. One disadvantage, however, is that nasal inspiratory peak flow is influenced by lower airway as well as upper airway function. Rhinomanometry is a more sensitive technique that is specific for nasal measurements. The equipment, however, requires an operator, is more expensive, and is not portable. Thus, it is applicable only for clinic visit measures in clinical trials. Measurements require patient cooperation and coordination, and not all can achieve repeatable results. Thus, this objective measure is best suited to laboratory challenge studies involving smaller numbers of selected volunteers. A nonphysiological measure of nasal patency is acoustic rhinometry. This sonic echo technique measures internal nasal luminal volume and the minimum cross-sectional area. The derivation of these measures from the reflected sound waves requires complex mathematical transformation and makes several theoretical assumptions. Despite this, however, such measures correlate well with the nasal physiological measures, and the nasal volume measures have been shown to relate well to results obtained by imaging techniques such as computed tomography scanning or magnetic resonance imaging. Like rhinomanometry, acoustic rhinometry is not suitable for home monitoring and can be applied only to clinic visit measures or for laboratory nasal challenge monitoring. It has advantages in being easy to use, in requiring little patient cooperation, and in providing repeatable results. In addition to nasal obstruction, allergic rhinitis is recognized to be associated with impaired mucociliary clearance and altered nasal responsiveness. Measures exist for the monitoring of these aspects of nasal dysfunction. Although measures of mucociliary clearance are simple to perform, they have a poor record of reproducibility. Their incorporation into clinical trials is thus questionable, although positive outcomes from therapeutic intervention have been reported. Measures of nasal responsiveness are at present largely confined to research studies investigating disease mechanisms in allergic and nonallergic rhinitis. The techniques are insufficiently standardized to be applied to multicenter clinical trials but could be used in limited-center studies to gain insight into the regulatory effects of different therapeutic modalities.

Journal Article

Abstract  Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.

Journal Article

Abstract  Unanesthesized male Sprague-Dawley rats, averaging 261 g of weight (s.d.=9 g), were exposed to a radioactively (198Au) labeled monodisperse carnauba wax aerosol, whose AMMD was 0.54 micrometers with a σg of 1.1, to determine the alveolar deposition and clearance of particles. Results indicate that 74% of the initial lung burden is cleared in phase one with a T/2 of 11 hours. The remaining 26%, conventionally considered to be the alveolar deposit, is cleared with a T/2 of 320 hours. Excised lungs from serial sacrifices have also been measured. The retention curve resulting from the pooled lung data per each day compared well with the curve of the whole animals counted in vivo.

  • <<
  • 9 of 24
  • >>
Filter Results