WFLC - CAIF Report

Project ID

3013

Category

Other

Added on

Dec. 14, 2020, 8:58 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Carbon monoxide (CO) exposure levels encountered by wildland firefighters (WLFs) throughout their work shift can change considerably within a few minutes due to the varied tasks that are performed and the changing environmental and fire conditions encountered throughout the day. In a U.S. Forest Service study during the 2009-2012 fire seasons, WLFs from 57 different fires across the U.S. were monitored for CO using CO data-logging detectors while an observer recorded worker tasks, fire characteristics, and environmental conditions at scheduled intervals. Exposures to CO for 735 WLF's work shifts were analyzed to assess the effect of variations among work tasks, fire characteristics, and environmental conditions. Geometric mean full shift time-weighted averages were low at 2.4 parts per million (ppm) and average length of work shift was 11 hr and 15 min. The task with the highest mean CO exposure was sawyer/swamper at 6.8 ppm; workers performing that task had an estimated 9 times higher odds of a having a 1-min CO measurement exceeding 25 ppm than the referent pump task (OR = 8.89, 95% CI = 1.97, 40.24). After adjusting CO exposure limits for shift length, elevation, and work level, 2% and 4% of the WLF's work shifts exceeded the National Institute for Occupational Safety and Health's recommended exposure level and the American Conference of Governmental Industrial Hygienist's threshold limit value, respectively. In regression modeling, variables that were significantly associated with elevated levels of CO exposure included: task, fuel model, wind orientation, crew type, relative humidity, type of attack, and wind speed. In the absence of instruments such as CO detectors that can determine and alert WLFs to elevated CO levels, recognition of the conditions that lead to elevated levels of CO exposure can assist WLFs to effectively use administrative controls, such as work rotations, to minimize exposures.

DOI
Journal Article

Abstract  Forest harvest effects on streamflow generation have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VELMA), to elucidate how hillslope and catchment-scale processes control stream discharge in a small Pacific Northwest catchment. VELMA is a spatially distributed ecohydrology model that links hydrological and biogeochemical processes within watersheds. The study site is WS10 of the H.J. Andrews LTER, a 10 ha forested catchment clearcut in 1975. Simulated and observed daily streamflow are in good agreement for both the pre-(1969-1974) and postharvest (1975-2008) periods (Nash-Sutcliffe efficiency = 0.807 and 0.819, respectively). One hundred scenarios, where harvest amounts ranged from 2% to 100% were conducted. Results show that (1) for the case of a 100% clearcut, stream discharge initially increased by similar to 29% or 345 mm but returned to preclearcut levels within 50 years, and (2) annual streamflow increased at a near linear rate of 3.5 mm year(-1) for each percent of catchment harvested, irrespective of location. Thereafter, to assess the impact of harvest location on stream discharge, 20 harvest scenarios were simulated, where harvest amount was fixed at 20% but harvest location varied. Results show that the streamflow response is strongly sensitive to harvest distance from the stream channel. Specifically, a 20% clearcut area near the catchment divide resulted in an average annual streamflow increase of 53 mm, whereas a 20% clearcut near the stream resulted in an average annual streamflow increase of 92 mm.

DOI
Journal Article

Abstract  Visibility-related weather hazards have significant impacts on motor vehicle operators because of decreased driver vision, reduced roadway speed, amplified speed variability, and elevated crash risk. This research presents a national analysis of fog-, smoke-, and dust storm-associated vehicular fatalities in the United States. Initially, a database of weather-related motor vehicle crash fatalities from 1994 to 2011 is constructed from National Highway Traffic Safety Administration data. Thereafter, spatiotemporal analyses of visibility-related (crashes where a vision hazard was reported at time of event) and vision-obscured (drivers vision was recorded as obscured by weather, and a weather-related vision hazard was reported) fatal vehicular crashes are presented. Results reveal that the annual number of fatalities associated with weather-related, vision-obscured vehicular crashes is comparable to those of more notable and captivating hazards such as tornadoes, floods, tropical cyclones, and lightning. The majority of these vision-obscured crash fatalities occurred in fog, on state and U.S. numbered highways, during the cool season and during the morning commuting hours of 0500 to 0800 local time. Areas that experience the greatest frequencies of vision-obscured fatal crashes are located in the Central Valley of California, Appalachian Mountain and mid-Atlantic region, the Midwest, and along the Gulf Coast. From 2007 to 2011, 72% of all vision-obscured fatal crashes occurred when there was no National Weather Service weather-related visibility advisory in effect. The deadliest weather-related visibility hazard crashes during the period are exhibited, revealing a spectrum of environmental and geographical settings that can trigger these high-end events.

Journal Article

Abstract  BACKGROUND: Short-term exposure to ambient PM2.5 concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured and source chemical compositions can vary between cities.

OBJECTIVES: We determine how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimate associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examine between-city heterogeneity in estimated associations.

METHODS: We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four US cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits.

RESULTS: We found biomass burning, diesel vehicle, gasoline vehicle, and dust PM2.5 was similar in chemical composition between cities, but PM2.5 composition from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5.

CONCLUSIONS: We introduced an approach for comparing chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four US cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health.

Journal Article

Abstract  This paper evaluates the mortality-related benefits and costs of improvements in particle filtration in U.S. homes and commercial buildings based on models with empirical inputs. The models account for time spent in various environments as well as activity levels and associated breathing rates. The scenarios evaluated include improvements in filter efficiencies in both forced air heating and cooling systems of homes and heating, ventilating, and air conditioning systems of workplaces as well as use of portable air cleaners in homes. The predicted reductions in mortality range from approximately 0.25 to 2.4 per 10,000 population. The largest reductions in mortality were from interventions with continuously operating portable air cleaners in homes because, given our scenarios, these portable air cleaners with HEPA filters most reduced particle exposures. For some interventions, predicted annual mortality-related economic benefits exceed $1000 per person. Economic benefits always exceed costs with benefit-to-cost ratios ranging from approximately 3.9 to 133. Restricting interventions to homes of the elderly further increases the mortality reductions per unit population and the benefit-to-cost ratios.

Journal Article

Abstract  Background: Combustion-generated fine particulate matter (PM2.5) is associated with cardiovascular morbidity. Both traffic-related air pollution and residential wood combustion may be important, but few studies have compared their impacts. Objectives: To assess and compare effects of traffic-related and woodsmoke PM2.5 on endothelial function and systemic inflammation (C reactive protein, interleukin-6 and band cells) among healthy adults in Vancouver, British Columbia, Canada, using high efficiency particulate air (HEPA) filtration to introduce indoor PM2.5 exposure gradients. Methods: We recruited 83 healthy adults from 44 homes in traffic-impacted or woodsmoke-impacted areas to participate in this randomised, single-blind cross-over intervention study. PM2.5 concentrations were measured during two consecutive 7-day periods, one with filtration and the other with ‘placebo filtration’. Endothelial function and biomarkers of systematic inflammation were measured at the end of each 7-day period. Results: HEPA filtration was associated with a 40% decrease in indoor PM2.5 concentrations. There was no relationship between PM2.5 exposure and endothelial function. There was evidence of an association between indoor PM2.5 and C reactive protein among those in traffic-impacted locations (42.1% increase in C reactive protein per IQR increase in indoor PM2.5, 95% CI 1.2% to 99.5%), but not among those in woodsmoke-impacted locations. There were no associations with interleukin-6 or band cells. Conclusions: Evidence of an association between C reactive protein and indoor PM2.5 among healthy adults in traffic-impacted areas is consistent with the hypothesis that traffic-related particles, even at relatively low concentrations, play an important role in the cardiovascular effects of the urban PM mixture. Trial registration number: http://www.clinicaltrials.gov (NCT01570062).

Journal Article

Abstract  In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity—a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.

DOI
Journal Article

Abstract  The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O-3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, +/- 1 sigma) : [CO] = 231 +/- 116 ppb (spanning 84-1706 ppb), [NO] = 6.1 +/- 11.5 ppb (spanning 0-209 ppb), [NO2] = 11.7 +/- 8.3 ppb (spanning 0-71 ppb), and [O-3] = 23.2 +/- 12.5 ppb (spanning 0-99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmen-tal conditions over three seasons (sensor flow-cell temperature = 23.4 +/- 8.5 degrees C, spanning 4.1 to 45.2 degrees C; and relative humidity = 50.1 +/- 15.3 %, spanning 9.8-79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.

DOI
Journal Article

Abstract  What is the geological or ecological context that earth scientists, biologists, and resource managers use to understand large-scale watershed disturbances, such as fires, mass wasting, and floods? We address this question using a field study of post-fire channel changes in the Boise River basin in central Idaho based on surveys of over 27 km of channels. Intense rill and gully erosion from the Rabbit Creek fire (1995) greatly increased sediment supply to numerous third-through sixth-order valley floors. We concentrated our field study where recently aggraded and enlarged alluvial fans impinged on channels in drainage areas of 100-350 km(2). Alluvial fans that had enlarged because of post-fire sedimentation triggered a number of morphological changes in channels and valley floors. Alluvial fans created nick points in receiving channels that caused an increase in channel gradient immediately downstream of fans and a decrease in channel gradients upstream of fans for distances up to 4 km. Wide floodplains, side channels, and the beginning;of terrace construction were associated with increased sediment storage in proximity to aggraded fans. Fan-related changes in channel gradients also affected the spatial distribution of channel substrates. Studies across western North America indicate that periodic, large influxes of sediment to channels are a fundamental part of stream ecosystems. In addition, new perspectives in riverine ecology focus on the patchy distribution of aquatic habitats. Our study integrates those two perspectives by illustrating how fire-related sediment production coupled with irregularly spaced tributary junctions contributed to the formation of certain types of riverine habitats.

Journal Article

Abstract  We investigated health effects associated with fine particulate matter during a long-lived, large wildfire complex in northern California in the summer of 2008. We estimated exposure to PM2.5 for each day using an exposure prediction model created through data-adaptive machine learning methods from a large set of spatiotemporal data sets. We then used Poisson generalized estimating equations to calculate the effect of exposure to 24-hour average PM2.5 on cardiovascular and respiratory hospitalizations and ED visits. We further assessed effect modification by sex, age, and area-level socioeconomic status (SES). We observed a linear increase in risk for asthma hospitalizations (RR=1.07, 95% CI=(1.05, 1.10) per 5µg/m(3) increase) and asthma ED visits (RR=1.06, 95% CI=(1.05, 1.07) per 5µg/m(3) increase) with increasing PM2.5 during the wildfires. ED visits for chronic obstructive pulmonary disease (COPD) were associated with PM2.5 during the fires (RR=1.02 (95% CI=(1.01, 1.04) per 5µg/m(3) increase) and this effect was significantly different from that found before the fires but not after. We did not find consistent effects of wildfire smoke on other health outcomes. The effect of PM2.5 during the wildfire period was more pronounced in women compared to men and in adults, ages 20-64, compared to children and adults 65 or older. We also found some effect modification by area-level median income for respiratory ED visits during the wildfires, with the highest effects observed in the ZIP codes with the lowest median income. Using a novel spatiotemporal exposure model, we found some evidence of differential susceptibility to exposure to wildfire smoke.

Journal Article

Abstract  The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

DOI
Journal Article

Abstract  Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with elevation, at scales from 1 to 1000 m(2). We found no support for the hypothesis that community diversity inhibits alien invasion. At the 1-m(2) point scale, where we would expect competitive interactions between the largely herbaceous flora to be most intense, alien species richness as well as alien cover increased with increasing native species richness in all communities. This suggests that aliens are limited not by the number of native competitors, but by resources that affect establishment of both natives and aliens. Blue-oak savannas were heavily dominated by alien species and consistently had more alien than native species at the 1-m(2) scale. All of these aliens are annuals, and it is widely thought that they have displaced native bunchgrasses. If true, this means that aliens have greatly increased species richness. Alternatively, there is a rich regional flora of native annual forbs that could have dominated these grasslands prior to displacement by alien grasses. On our sites, livestock grazing increased the number of alien species and alien cover only slightly over that of sites free of livestock grazing for more than a century, indicating some level of permanency to this invasion. In chaparral,,both diversity and aliens increased markedly several years after fire. Invasive species are rare in undisturbed shrublands, and alien propagules fail to survive the natural crown fires in these ecosystems. Thus, aliens necessarily must colonize after fire and, as a consequence, time since fire is an important determinant of invasive presence. Blue oak savannas are an important propagule source for alien species because they maintain permanent populations of all alien species encountered in postfire chaparral, and because the vegetation mosaic in this region places them in proximity to chaparral. The speed at which alien propagules reach a burned site and the speed at which the shrublands return to their former closed-canopy condition determine alien invasion. Frequent burning of this vegetation alters the balance in favor of alien invasion. In the higher-elevation coniferous forests, species diversity was a function of fire severity and time since fire. High-intensity fires create gaps that decrease canopy coverage and increase light levels and nutrients for an ephemeral successional flora. Few species have persistent seed banks, so the time since fire is an important determinant of colonization success. There was a highly significant interaction between fire severity and time since fire for understory cover, species richness, and alien richness and cover. Understory was sparse in the first year after fire, particularly in low-severity burns, and increased substantially several years after fire, particularly on high-severity burns. Both fire severity and time since fire affected alien species richness and dominance. Coniferous forests had about one-third as many alien species as the foothill oak savannas, and fewer than half of the species were shared between these communities. Unburned coniferous forests were largely free of alien species, whereas some burned sites had a significant alien presence, which presents a challenge for fire restoration of these forests.

Journal Article

Abstract  Management of fire is an important and controversial policy issue. Active fire suppression has led to a backlog of fuels, limited the ecological benefits of fire, and reduced short-term smoke impacts likely delaying these emissions to future generations over a larger spatial extent. Smoke impacts can be expected to increase as fire size and intensity increase and the fuel backlog is consumed; whether through reintroduction of fire under desirable conditions or through stand replacing fire. Land Management Agencies would like to increase the use of naturally ignited fires to burn during favorable conditions as a way to reduce catastrophic fires. This study provides information about the levels of air quality impacts expected from these types of fires and discusses some of the policy controversies of managed fire that propagate inconsistencies between agencies and enter the public discourse. The Lion Fire, a primarily low intensity 8,370 ha fire that was extensively monitored for Particulate Matter less than 2.5 microns (PM2.5), is used to quantify impacts to air quality. PM2.5 monitoring sites are used to assess exposure, public health impacts, and subsequently quantify annual air quality during a year with a fire that is within the historic normal fire size and intensity for this area. Ground level PM2.5 impacts were found to be localized with 99% of the hourly Air Quality Index readings in the moderate or good category for the sites impacted by the fire. PM2.5 concentrations at sites nearest the fire were below annual federal air quality standards for PM2.5 with annual 98th percentile at the most impacted sites (Johnsondale, Kernville, and Camp Nelson) of 35.0, 34.0, and 28.0 μg m(-3) respectively. Smoke impacts to PM2.5 concentrations were not found to reach the populated Central Valley. The findings suggest that this type of fire can be implemented with minimal public health impacts thus allowing an opportunity for air and fire managers to alter policy to allow additional burning in an area with severe anthropogenic air pollution and where frequent widespread fire is both beneficial and inevitable. The more extensive air quality impacts documented with large high intensity fire may be averted by embracing the use of fire to prevent unwanted high intensity burns. A widespread increase in the use of fire for ecological benefit may provide the resiliency needed in Sierra Nevada forests as well as be the most beneficial to public health through the reduction of single dose exposure to smoke and limiting impacts spatially.

DOI
Journal Article

Abstract  Stand-level spatial pattern influences key aspects of resilience and ecosystem function such as disturbance behavior, regeneration, snow retention, and habitat quality in frequent-fire pine and mixed-conifer forests. Reference sites, from both pre-settlement era reconstructions and contemporary forests with active fire regimes, indicate that frequent-fire forests are complex mosaics of individual trees, tree clumps, and openings. There is a broad scientific consensus that restoration treatments should seek to restore this mosaic pattern in order to restore resilience and maintain ecosystem function. Yet, methods to explicitly incorporate spatial reference information into restoration treatments are not widely used. In addition, targets from reference conditions must be critically evaluated in light of climate change. We used a spatial clump identification algorithm to quantify reference patterns based on a specified inter-tree distance that defines when trees form clumps. We used climatic water balance parameters, down-scaled climate projections, and plant associations to assess our historical reference sites in the context of projected future climate and identify climate analog reference conditions. Spatial reference information was incorporated into a novel approach to prescription development, tree marking, and monitoring based on viewing stand structure and pattern in terms of individuals, clumps, and openings (ICO) in a mixed-conifer forest restoration case study. We compared the results from the ICO approach with simulations of traditional basal area and spacing-based thinning prescriptions in terms of agreement with reference conditions and functional aspects of resilience. The ICO method resulted in a distribution of tree clumps and openings within the range of reference patterns, while the basal area and spacing approaches resulted in uniform patterns inconsistent with known reference conditions. Susceptibility to insect mortality was lower in basal area and spacing prescriptions, but openings and corresponding opportunities for regeneration and in situ climate adaptation were fewer. Operationally, the method struck a balance between providing clear targets for spatial pattern directly linked to reference conditions, sufficient flexibility to achieve other restoration objectives, and implementation efficiency. The need to track pattern targets during implementation and provide immediate feedback to marking crews was a key lesson. The ICO method, especially when used in combination with climate analog reference targets, offers a practical approach to restoring spatial patterns that are likely to enhance resilience and climate adaptation. (C) 2012 Elsevier B.V. All rights reserved.

DOI
Journal Article

Abstract  A Particle-Into-Liquid Sampler - Total Organic Carbon (PILS-TOC) and fraction collector system was flown aboard a Twin Otter aircraft sampling prescribed burning emissions in South Carolina in November 2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated offline samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, and galactosan) analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have a unique Delta levoglucosan/Delta water-soluble organic carbon (WSOC) ratio (RF01/RF02/RF03/RF05 = 0.163 +/- 0.007 mu g C mu g(-1) C, RF08 = 0.115 +/- 0.011 mu g C mu g(-1) C, RF09A = 0.072 +/- 0.028 mu g C mu g(-1) C, and RF09B = 0.042 +/- 0.008 mu g C mu g(-1) C, where RF means research flight). These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/F02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Delta galactosan/Delta levoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 +/- 0.004 mu g mu g(-1), RF08 = 0.085 +/- 0.009 mu g mu g(-1), and RF09A = 0.101 +/- 0.029 mu g mu g(-1)) obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Delta potassium/Delta levoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Delta levoglucosan/Delta WSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.

DOI
Journal Article

Abstract  We summarized structure and composition of dry forests from a 90-year-old timber inventory collected by the Bureau of Indian Affairs on the former Klamath Indian Reservation (now part of the Fremont-Winema National Forest). This analysis includes data from 424,626 conifers >= 15 cm dbh on 3068 transects covering 6646 ha. The data represent a 10-20% sample of 38,651 ha of forest growing on sites that are classified as ponderosa pine (Pinus ponderosa) and mixed-conifer habitat types distributed within the 117,672 ha of the study area. Large, drought- and fire-tolerant ponderosa pine dominated these forests. Large tree (>53 cm dbh) basal area (13 +/- 7 m(2)/ha) contributed 83 16% of total basal area; 81 +/- 20% of the large-tree basal area was ponderosa pine. Composition and structure of forests on mixed-conifer sites were very similar to those on ponderosa pine sites. Variability in composition and structure was recorded on all habitat types and was highest on moist mixed-conifer sites. Stand densities (trees per hectare, tph) have more than tripled over the past 90 years from 68 +/- 28 tph to a current density of 234 +/- 122 tph recorded in Current Vegetation Survey data collected by the United States Forest Service. Mean basal area, however, increased by less than 20%. Basal area of large trees (>53 cm dbh) has declined by >50%, and the abundance of large trees as a proportion of the total number of trees per hectare has decreased by more than a factor of five. This landscape-level record of historical forest conditions allows inferences about structure and composition across tens of thousands of hectares. A historical landscape emerges which supports current working hypotheses that frequent, low- to moderate-severity wildfires maintained a predominantly low-density forest dominated by large, fire- and drought-tolerant ponderosa pines across a significant moisture and productivity gradient from the driest ponderosa pine to the mixed-conifer habitat types.

DOI
Journal Article

Abstract  Low-power, and relatively low-cost, gas sensors have potential to improve understanding of intra-urban air pollution variation by enabling data capture over wider networks than is possible with 'traditional' reference analysers. We evaluated an Aeroqual Ltd. Series 500 semiconducting metal oxide O-3 and an electrochemical NO2 sensor against UK national network reference analysers for more than 2 months at an urban background site in central Edinburgh. Hourly-average Aeroqual O-3 sensor observations were highly correlated (R-2 = 0.91) and of similar magnitude to observations from the UV-absorption reference O-3 analyser. The Aeroqual NO2 sensor observations correlated poorly with the reference chemiluminescence NO2 analyser (R-2 = 0.02), but the deviations between Aeroqual and reference analyser values ([NO2](Aeraq) - [NO2](ref)) were highly significantly correlated with concurrent Aeroqual O-3 sensor observations [O3](Aeroq). This permitted effective linear calibration of the [O3](Aeroq) data, evaluated using 'hold out' subsets of the data (R-2 >= 0.85). These field observations under temperate environmental conditions suggest that the Aeroqual Series 500 NO2 and O-3 monitors have good potential to be useful ambient air monitoring instruments in urban environments provided that the O-3 and NO2 gas sensors are calibrated against reference analysers and deployed in parallel. (C) 2014 The Authors. Published by Elsevier Ltd.

DOI
Journal Article

Abstract  Biomass burning is one of the major sources of organic carbon aerosols. However, there is limited information on the temporal and spatial variability for the impact of biomass burning in most regions of the United States, including the upper Midwest. In an attempt to obtain information on these variabilities, high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was employed to measure the smoke marker levoglucosan (and various other carbohydrates) on archived daily Federal Reference Monitor (FRM) Teflon filter samples from the PM2.5 NAAQS compliance monitoring network. Levoglucosan data, along with measurements of water-soluble organic carbon (WSOC) and potassium, from the analysis of FRM samples collected at 10 sites in the upper Midwest from March 2004 through February 2005 are presented. Results suggest that WSOC contains a substantial regional component, summer levoglucosan is dependent on both horizontal and vertical transport of fire emissions, and potassium revealed no clear pattern associated with biomass burning impacts. The contribution of organic carbon due to primary biomass burning particle emissions ranged on average from about 5 to 35%, suggesting that for this study in the upper Midwest, >50% of the WSOC is from secondary organic aerosol rather than biomass burning. In a second paper the results from the measurements of the other carbohydrates that HPAEC-PAD analysis can determine are discussed to investigate their sources and trends.

DOI
Journal Article

Abstract  Accurate air quality forecasts can allow for mitigation of the health risks associated with high levels of air pollution. During September 2003, a team of NASA NOAA and EPA researchers demonstrated a prototype tool for improving fine particulate matter (PM2.5) air quality forecasts using satellite aerosol observations. Daily forecast products were generated from a near-real-time fusion of multiple input data products, including aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS)/Earth Observing System (EOS) instrument on the NASA Terra satellite, PM 2.5 concentration from over 300 state/local/national surface monitoring stations, meteorological fields from the NOAA/NCEP Eta Model, and fire locations from the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WFABBA) product. The products were disseminated via a Web interface to a small group of forecasters representing state and local air management agencies and the EPA. The MODIS data improved forecaster knowledge of synoptic-scale air pollution events, particularly over oceans and in regions devoid of surface monitors. Forecast trajectories initialized in regions of high AOD offered guidance for identifying potential episodes of poor air quality. The capability of this approach was illustrated with a case study showing that aerosol resulting from wildfires in the northwestern United States and southwestern Canada is transported across the continent to influence air quality in the Great Lakes region a few days later. The timing of this demonstration was selected to help improve the accuracy of the EPAs AIRNow (www.epa.gov/airnow/) next-day PM2.5, air quality index forecast, which began on 1 October 2003. Based on the positive response from air quality managers and forecasters, this prototype was expanded and transitioned to an operational provider during the summer of 2004.

DOI
Journal Article

Abstract  Retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) using the Collection 5 (C005) algorithm provides large‐scale (10 × 10 km) estimates that can be used to predict surface layer concentrations of particulate matter with aerodynamic diameter smaller than 2.5 µm (PM2.5). However, these large‐scale estimates are not suitable for identifying intraurban variability of surface PM2.5 concentrations during wildfire events when individual plumes impact populated areas. We demonstrate a method for providing high‐resolution (2.5 km) kernel‐smoothed estimates of AOD over California during the 2008 northern California fires. The method uses high‐resolution surface reflectance ratios of the 0.66 and 2.12 µm channels, a locally derived aerosol optical model characteristic of fresh wildfire plumes, and a relaxed cloud filter. Results show that the AOD derived for the 2008 northern California fires outperformed the standard product in matching observed aerosol optical thickness at three coastal Aerosol Robotic Network sites and routinely explained more than 50% of the variance in hourly surface PM2.5 concentrations observed during the wildfires.

Journal Article

Abstract  We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains similar to 0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at midcentury. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p < 0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at midcentury. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by similar to 90% and BC by similar to 50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in Rocky Mountains Forest. (C) 2013 Elsevier Ltd. All rights reserved.

DOI
Journal Article

Abstract  The frequency and magnitude of wildfires in North America have increased by four-fold over the last two decades. However, the impacts of wildfires on the thermal environments of freshwaters, and potential effects on coldwater fishes are incompletely understood. We examined the short-term effects of a wildfire on temperatures and Steelhead/Rainbow Trout (Oncorhynchus mykiss) bioenergetics and distribution in a California coastal stream. One year after the wildfire, mean daily stream temperatures were elevated by up to 0.6 degrees C in burned compared to unburned pools. Among burned pools, light flux explained over 85% of the variation in altered stream temperatures, and 76% of the variation in light flux was explained by an index of burn severity based on proximity of the pool to burned streamside. We estimated that salmonids of variable sizes inhabiting burned pools had to consume between 0.3-264.3 mg of additional prey over 48 days to offset the 0.01-6.04 kJ increase in metabolic demand during the first post-fire summer. However, stomach content analysis showed that fish in the burned region were consuming relatively little prey and significantly less than fish in the reference region. Presumably due to starvation, mortality, or emigration, we found a significant negative relationship between the change in total salmonid biomass over the post-fire summer and the average energy costs (kJ.g(-1).day(-1)) within a burned pool. This study demonstrates that wildfire can generate thermal heterogeneity in aquatic ecosystems and drive short-term increases in stream temperature, exacerbating bioenergetically stressful seasons for coldwater fishes.

DOI
Journal Article

Abstract  Uncertainties associated with meteorological inputs which are propagated through atmospheric chemical transport models may constrain their ability to replicate the effects of wildland fires on air quality. Here, we investigate the sensitivity of predicted fine particulate matter (PM2.5) levels to uncertain wind fields by simulating the air quality impacts of two fires on an urban area with the Community Multiscale Air Quality modeling system (CMAQ). Brute-force sensitivity analyses show that modeled concentrations at receptors downwind from the fires are highly sensitive to variations in wind speed and direction. Additionally, uncertainty in wind fields produced with the Weather Research and Forecasting model was assessed by evaluating meteorological predictions against surface and upper air observations. Significant differences between predicted and observed wind fields were identified. Simulated PM2.5 concentrations at urban sites displayed large sensitivities to wind perturbations within the error range of meteorological inputs. The analyses demonstrate that normalized errors in CMAQ predictions attempting to model the regional impacts of fires on PM2.5 levels could be as high as 100% due to inaccuracies in wind data. Meteorological drivers may largely account for the considerable discrepancies between monitoring site observations and predicted concentrations. The results of this study demonstrate that limitations in fire-related air quality simulations cannot be overcome by solely improving emission rates.

  • <<
  • 4 of 27
  • >>
Filter Results