WFLC - CAIF Report

Project ID

3013

Category

Other

Added on

Dec. 14, 2020, 8:58 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  The Integrated Science Assessment for Ozone and Related Photochemical Oxidants is a concise synthesis and evaluation of the most policy-relevant science, and has been prepared as part of the review of the primary (health-based) and secondary (welfare-based) National Ambient Air Quality Standards (NAAQS) for Ozone and Related Photochemical Oxidants under the Clean Air Act. Welfare effects are non-health effects which, according to the Clean Air Act include, but are not limited to, effects on soils, water, crops, vegetation, animals, wildlife and climate. The Ozone ISA, in conjunction with additional technical and policy assessments, provides the policy relevant scientific information necessary to conduct a review of the current primary and secondary air quality standards for Ozone sufficiently protects public health and welfare. EPA has established NAAQS for six criteria pollutants. Presently the EPA is reviewing the air quality criteria and NAAQS for photochemical oxidants and ozone; ozone is the current indicator for this NAAQS. Periodically, EPA reviews the scientific basis for these standards by preparing an Integrated Science Assessment (ISA). The ISA, in conjunction with additional technical and policy assessments, provides the policy relevant scientific information necessary to conduct a review of the current NAAQS and the appropriateness of possible alternative standards. These reviews play a significant role in EPA’s commitment to ensuring a clean and healthy environment for the public.

DOI
Journal Article

Abstract  Exotic grasses are a widespread set of invasive species that are notable for their ability to significantly alter key aspects of ecosystem function. Understanding the role and importance of these invaders in forested landscapes has been limited but is now rising, as grasses from Eurasia and Africa continue to spread through ecosystems of the Americas, Australia, and many Pacific islands, where they threaten biodiversity and alter various aspects of the fire regime. The ecological, social and economic impacts of the grass-fire cycle associated with species such as cheatgrass (Bromus tectorum) have been long recognized in aridlands such as the iconic sagebrush ecosystems of the western US. However, the damaging impacts of invasive grasses in forestlands have received considerably less attention. We review literature, conceptual models, model output, and empirical evidence that indicate grass invasion in forest ecosystems may be an important yet largely under-recognized phenomenon. In combination with climate change, wildfire, and overstory management, invasive grasses could create a “perfect storm” that threatens forest resilience. Invasive grasses can be successful in forested environments or develop strongholds within forested mosaics and could provide the literal seeds for rapid change and vegetation type conversion catalyzed by wildfire or changes in climate. Although invasive grass populations may now be on the edge of forests or consist of relatively rare populations with limited spatial extent, these species may disrupt stabilizing feedbacks and disturbance regimes if a grass-fire cycle takes hold, forcing large portions of forests into alternative nonforested states. In addition, forest management actions such as thinning, prescribed fire, and fuel reduction may actually exacerbate invasive grass populations and increase the potential for further invasion, as well as broader landscape level changes through increased fire spread and frequency. Lack of understanding regarding the ecological consequences and importance of managing invasive grasses as a fuel may lead to unintended consequences and outcomes as we enter an age of novel and rapid ecological changes. This paper focuses on the contributory factors, mechanisms, and interactions that may set the stage for unexpected forest change and loss, in an effort to raise awareness about the potential damaging impact of grass invasion in forested ecosystems.

DOI
Journal Article

Abstract  Prescribed fire can result in significant benefits to ecosystems and society. Examples include improved wildlife habitat, enhanced biodiversity, reduced threat of destructive wildfire, and enhanced ecosystem resilience. Prescribed fire can also come with costs, such as reduced air quality and impacts to fire sensitive species. To plan for appropriate use of prescribed fire, managers need information on the tradeoffs between prescribed fire and wildfire regimes. In this study, we argue that information on tradeoffs should be presented at spatial and temporal scales commensurate with the scales at which these processes occur and that simulation modeling exercises should include some realistic measure of wildfire probability. To that end, we synthesized available scientific literature on relationships between prescribed fire and wildfire regimes, and their associated ecological and societal effects, focusing specifically on simulation modeling studies that consider wildfire probability and empirical and modeling studies that consider prescribed fire and wildfire regimes at spatial and temporal scales beyond individual events. Both empirical and modeling studies overwhelmingly show that increasing use of prescribed fire can result in wildfire regimes of lower extent and intensity. In some studies, a consequence associated with increased use of prescribed fire is an increase in the total, cumulative amount of fire on a landscape over time. Presumably this has implications for emissions and ecosystem carbon, however, effects on ecosystem carbon dynamics are much less clear as results vary considerably across studies. Results likely vary because studies use various landscape models with different parameter settings for processes (e.g., vegetation succession) and use different methodologies, time frames, and fire management and climate change scenarios. Future syntheses and meta-analyses would benefit from researchers providing more comprehensive and transparent documentation of model parameters, assumptions, and limitations. The literature review also revealed that studies on the implications of prescribed fire and wildfire regimes with regard to values other than carbon and emissions are scant and this represents a critical research need. Empirical studies are needed to calibrate and provide magnitude of order comparisons with simulation models and address tradeoffs with respect to other values (e.g., wildland urban interface, wildlife habitat). Such studies should be conducted with consideration for our framework, which includes the implications of prescribed fire and wildfire across broad spatial and temporal scales.

Journal Article

Abstract  Wildland fire emissions from both wildfires and prescribed fires represent a major component of overall U.S. emissions. Obtaining an accurate, time-resolved inventory of these emissions is important for many purposes, including to account for emissions of greenhouse gases and short-lived climate forcers, as well as to model air quality for health, regulatory, and planning purposes. For the U.S. Environmental Protection Agency's 2011 and 2014 National Emissions Inventories, a new methodology was developed to reconcile the wide range of available fire information sources into a single coherent inventory. The Comprehensive Fire Information Reconciled Emissions (CFIRE) inventory effort utilized satellite fire detections as well as a large number of national, state, tribal, and local databases. The methodology and results for CONUS and Alaska were documented and compared against other fire emissions databases, and the efficacy of the overall effort was evaluated. Results show the overall spatial pattern differences and relative seasonality of wildfires and prescribed fires across the country. Prescribed burn emissions occurred primarily in non-summer months were concentrated in the Southeast, Northwest, and lower Midwest, and were relatively consistent year to year. Wildfire emissions were much more variable but occurred primarily in the summer and fall. Overall, CFIRE represents a third of total emitted PM2.5 across all sources in the National Emissions Inventory, with prescribed fires accounting for nearly half of all CFIRE emissions. Compared with other wildland fire emissions inventories derived solely from satellite detections, the CFIRE inventory shows markedly increased emissions, reflecting the importance of the multiple national and regional databases included in CFIRE in capturing small fires and prescribed fires in particular. Implications: Wildland fire emissions inventories need to incorporate multiple sources of fire information in order to better represent the full range of fire activity, including prescribed burns and smaller fires. For the 2011 and 2014 U.S. National Emissions Inventory, a methodology was developed to collect, associate, and reconcile fire information from satellite data as well as a large number of national, regional, state, local, and tribal fire information databases across the country. The resulting emissions inventory shows the importance of this type of integration and reconciliation when compared against other emissions inventories for the same period.

Archival Material
DOI
Journal Article

Abstract  Biomass burning is a source of fine particulate matter (PM2.5) air pollution, which adversely impacts human health. However, quantifying the health effects from biomass burning PM(2.5)is difficult. Monitoring networks generally lack the spatial density needed to capture the heterogeneity of biomass burning smoke. Satellite aerosol optical depth (AOD) can be used to fill spatial gaps but does not distinguish surface-level aerosols. Plume height (PH) observations may provide constraints on the vertical distribution of smoke and its impact on surface concentrations. We assessed PH characteristics from Multi-Angle Implementation of Atmospheric Correction (MAIAC) and evaluated its correlation with colocated PM(2.5)and AOD measurements. PH is generally highest over the western United States. The ratio PM2.5:AOD generally decreases with increasing PH:PBLH (planetary boundary layer height), showing that PH has the potential to refine surface PM(2.5)estimates for collections of smoke events.

DOI
Journal Article

Abstract  Before the launch of the TROPOspheric Monitoring Instrument (TROPOMI), only two other satellite instruments were able to observe aerosol plume heights globally, the Multi-angle Imaging SpectroRadiometer (MISR) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The TROPOMI aerosol layer height is a potential game changer, since it has daily global coverage, and the aerosol layer height retrieval is available in near real time. The aerosol layer height can be useful for aviation and air quality alerts, as well as for improving air quality forecasting related to wildfires. Here, TROPOMI's aerosol layer height product is evaluated with MISR and CALIOP observations for wildfire plumes in North America for the 2018 fire season (June to August). Further, observing system simulation experiments were performed to interpret the fundamental differences between the different products. The results show that MISR and TROPOMI are, in theory, very close for aerosol profiles with single plumes. For more complex profiles with multiple plumes, however, different plume heights are retrieved; the MISR plume height represents the top layer, and the plume height retrieved with TROPOMI tends to have an average altitude of several plume layers. The comparison between TROPOMI and MISR plume heights shows that, on average, the TROPOMI aerosol layer heights are lower, by approximately 600 m, compared to MISR, which is likely due to the different measurement techniques. From the comparison to CALIOP, our results show that the TROPOMI aerosol layer height is more accurate over dark surfaces, for thicker plumes, and plumes between approximately 1 and 4.5 km. MISR and TROPOMI are further used to evaluate the plume height of Environment and Climate Change Canada's operational forecasting system FireWork with fire plume injection height estimates from the Canadian Forest Fire Emissions Prediction System (CFFEPS). The modelled plume heights are similar compared to the satellite observations but tend to be slightly higher with average differences of 270–580 and 60–320 m compared to TROPOMI and MISR, respectively.

DOI
Journal Article

Abstract  We present a new algorithm to derive smoke plume height (H-a) using the thermal contrast from the rising mixture of aerosol and emitted gases in the Moderate Resolution Imaging Spectroradiometer (MODIS) 11-mu m channel. Validation shows good agreement with the wind-corrected Multi-angle Imaging SpectroRadiometer (MISR)-MISR Interactive Explorer (MINX) values, with about 60% of the MODIS Terra thermal retrievals within 500 m of MISR H-a and 450 m lower on average. The bias is expected because the thermal technique represents an effective rather than a top plume height from MISR MINX. The comparison of MODIS Aqua retrievals with Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP) Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations (CALIPSO) shows similar statistics, with a standard deviation of 458 m for the mean plume height and 216 m lower on average. H-a is part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) MODIS Collection 6 suite of products (MCD19), accessible via the Land Product Distributed Active Archive Center (LP DAAC). Aerosol injection height is reported in the daily MAIAC atmospheric product MCD19A2 along with the cloud mask (CM), column water vapor, aerosol optical depth (AOD), AOD uncertainty, and aerosol type, at 1-km resolution on a global sinusoidal grid. Despite some limitations, the vastly increased coverage from MODIS observations makes it a valuable data set complementing the established MISR and CALIOP products.

Journal Article

Abstract  In 2010, the American Heart Association published a statement concluding that the existing scientific evidence was consistent with a causal relationship between exposure to fine particulate matter and cardiovascular morbidity and mortality, and that fine particulate matter exposure is a modifiable cardiovascular risk factor. Since the publication of that statement, evidence linking air pollution exposure to cardiovascular health has continued to accumulate and the biological processes underlying these effects have become better understood. This increasingly persuasive evidence necessitates policies to reduce harmful exposures and the need to act even as the scientific evidence base continues to evolve. Policy options to mitigate the adverse health impacts of air pollutants must include the reduction of emissions through action on air quality, vehicle emissions, and renewable portfolio standards, taking into account racial, ethnic, and economic inequality in air pollutant exposure. Policy interventions to improve air quality can also be in alignment with policies that benefit community and transportation infrastructure, sustainable food systems, reduction in climate forcing agents, and reduction in wildfires. The health care sector has a leadership role in adopting policies to contribute to improved environmental air quality as well. There is also potentially significant private sector leadership and industry innovation occurring in the absence of and in addition to public policy action, demonstrating the important role of public-private partnerships. In addition to supporting education and research in this area, the American Heart Association has an important leadership role to encourage and support public policies, private sector innovation, and public-private partnerships to reduce the adverse impact of air pollution on current and future cardiovascular health in the United States.

DOI
Journal Article

Abstract  Post-fire soil erosion is of considerable concern because of the potential decline in site productivity and adverse effects on downstream resources. For the Colorado Front Range there is a paucity of post-fire erosion data and a corresponding lack of predictive models. This study measured hillslope-scale sediment production rates and site characteristics for three wild and three prescribed fires over two summers and one winter using 48 sediment fences. Over 90% of the sediment was generated by summer convective storms. Sediment production rates from recent, high-severity wildfires were 0.2-1.0 kg m(-2) year(-1). Mean sediment production rates from areas recently burned at moderate and low severity were only 0.02 and 0.005 kg m(-2) year(-1), respectively. For a given severity, sediment production rates from prescribed fires were generally lower than from wildfires, but there was considerable variability between plots and within fire severity classes. Fire severity, percent bare soil, rainfall erosivity, soil water repellency and soil texture explained 77% of the variability in sediment production rates, while a two-parameter model using percentage bare soil and rainfall erosivity explained 62% of the variability. Model validation confirmed the usefulness of these empirical models. The improved understanding of post-fire erosion rates can help guide forest management and post-fire rehabilitation efforts.

WoS
Technical Report

Abstract  Smoke exposure measurements among firefighters at wildfires in the Western United States between 1992 and 1995 showed that although most exposures were not significant, between 3 and 5 percent of the shift-average exposures exceeded occupational exposure limits for carbon monoxide and respiratory irritants. Exposure to benzene and total suspended particulate was not significant, although the data for the latter were limited in scope. The highest short-term exposures to smoke occurred during initial attack of small wildfires, but the shift-average exposures were less during initial attack than those at extended (project) fire assignments because of unexposed time during the shift. Among workers involved in direct attack of actively burning areas and maintaining fireline boundaries, peak exposure situations could be several times greater than recommended occupational exposure limits for short-term exposures. The study found that exposure to acrolein, benzene, formaldehyde, and respirable particulate matter could be predicted from measurements of carbon monoxide. Electrochemical dosimeters for carbon monoxide were the best tool for routinely assessing smoke exposure, so long as quality assurance provisions were included in the monitoring program. Suggested procedures for reducing overexposure to smoke include (1) hazard awareness training, (2) routinely monitoring smoke exposure, (3) evaluating health risks and applicable exposure criteria, (4) improving health surveillance and injury recordkeeping, (5) limiting use of respiratory protection when other mitigation is not feasible, and (6) involving workers, managers, and regulators to develop a smoke exposure management strategy.

DOI
Journal Article

Abstract  Ozone exposure stimulates an oxidative burst in leaves of sensitive plants, resulting in the generation and accumulation of hydrogen peroxide (H2O2) in tobacco and tomato, and superoxide (O-2(-.)) together with H2O2 in Arabidopsis accessions. Accumulation of these reactive oxygen species (ROS) preceded the induction of cell death, and both responses co-occurred spatially in the periveinal regions of the leaves. Re-current ozone exposure of the sensitive tobacco cv. Bel W3 in closed chambers or in the field led to an enlargement of existing lesions by priming the border cells for H2O2 accumulation. Open top chamber experiments with native herbaceous plants in the field showed that Malva sylvestris L. accumulates O-2(-.) at those sites that later exhibit plant cell death. Blocking of ROS accumulation markedly reduced ozone-induced cell death in tomato, Arabidopsis and M. sylvestris. It is concluded that ozone triggers an in planta generation and accumulation of H2O2 and/or O-2(-.) depending on the species, accession and cultivar, and that both these reactive oxygen species are involved in the induction of cell death in sensitive crop and native plants.

Journal Article

Abstract  We report approximately 500 indoor-outdoor air exchange rate (AER) calculations based on measurements conducted in residences in three US metropolitan areas in 1999-2001: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Overall, a median AER across these urban areas and seasons was 0.71 air changes per hour (ACH, or per hour; n = 509) while median AERs measured in California (n = 182), New Jersey (n = 163), and Texas (n = 164) were 0.87, 0.88, and 0.47 ACH, respectively. In Texas, the measured AERs were lower in the summer cooling season (median = 0.37 ACH) than in the winter heating season (median = 0.63 ACH), likely because of the reported use of room air conditioners as Houston is typically hot and humid during the summer. The measured AERs in California were higher in summer (median = 1.13 ACH) than in winter (median = 0.61 ACH). Because the summer cooling season in Los Angeles County is less humid than in New Jersey or Texas, natural ventilation through open windows and screened doors likely increased measured AER in California study homes. In New Jersey, AER were similar across heating and cooling seasons, although the median AER was relatively lower during the spring. PRACTICAL IMPLICATIONS: Adequate ventilation or air exchange rate (AER) for an indoor environment is important for human health and comfort, and relevant to building design and energy conservation and efficiency considerations. However, residential AER data, especially measured by more accurate non-toxic tracer gas methodologies, are at present quite limited worldwide, and are insufficient to represent the variations across regions and seasons within and between homes, including apartments and condominiums in more densely populated urban areas. The present paper presents quantitative and qualitative data to characterize residential AERs in three US urban areas with different climate attributes.

DOI
Journal Article

Abstract  Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non-methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All EFs are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. Biomass burning terminology is defined to promote consistency. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr(-1) of gas-phase NMOC, which is almost 3 times larger than most previous estimates. Selected recent results (e. g. measurements of HONO and the BB tracers HCN and CH3CN) are highlighted and key areas requiring future research are briefly discussed.

DOI
Journal Article

Abstract  Dormant seeds of a California chaparral annual were induced to germinate by smoke or vapors emitted from smoke-treated sand or paper. Nitrogen oxides induced 100 percent germination in a manner similar to smoke. Smoke-treated water samples inducing germination were comparable in acidity and concentration of nitrate and nitrite to nitrogen dioxide (NO2)-treated samples. Vapors from smoke-treated and NO2-treated filter paper had comparable NO2 flux rates. Chaparral wildfires generate sufficient nitrogen oxides from combustion of organic matter or from postfire biogenic nitrification to trigger germination of Emmenanthe penduliflora. Nitrogen oxide-triggered germination is not the result of changes in imbibition, as is the case with heat-stimulated seeds.

DOI
Journal Article

Abstract  The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered.

DOI
Journal Article

Abstract  Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total aboveground and component biomass, defined in dry weight terms, for trees in the United States. We then implemented a modified meta-analysis based on the published equations to develop a set of consistent, national-scale aboveground biomass regression equations for U.S. species. Equations for predicting biomass of tree components were developed as proportions of total aboveground biomass for hardwood and softwood groups. A comparison with recent equations used to develop large-scale biomass estimates from U.S. forest inventory data for eastern U.S. species suggests general agreement (±30%) between biomass estimates. The comparison also shows that differences in equation forms and species groupings may cause differences at small scales depending on tree size and forest species composition. This analysis represents the first major effort to compile and analyze all available biomass literature in a consistent national-scale framework. The equations developed here are used to compute the biomass estimates used by the model FORCARB to develop the U.S. C budget.

  • <<
  • 6 of 27
  • >>
Filter Results