Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor α by perfluoroalkyl carboxylates and sulfonates: estimation of PFOA induction equivalency factors

Ishibashi, H; Kim, EY; Iwata, H

HERO ID

1276109

Reference Type

Journal Article

Year

2011

Language

English

PMID

21381677

HERO ID 1276109
In Press No
Year 2011
Title Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor α by perfluoroalkyl carboxylates and sulfonates: estimation of PFOA induction equivalency factors
Authors Ishibashi, H; Kim, EY; Iwata, H
Journal Environmental Science & Technology
Volume 45
Issue 7
Page Numbers 3123-3130
Abstract The present study assessed the transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor α (BS PPARα) by perfluorochemicals (PFCs) having various carbon chain lengths (C4-C12) using an in vitro reporter gene assay. Among the twelve PFCs treated with a range of 7.8-250 μM concentration, eight perfluoroalkyl carboxylates (PFCAs) and two perfluoroalkyl sulfonates (PFSAs) induced BS PPARα-mediated transcriptional activities in a dose-dependent manner. To compare the BS PPARα transactivation potencies of PFCs, the present study estimated the PFOA induction equivalency factors (IEFs), a ratio of the 50% effective concentration of PFOA to the concentration of each compound that can induce the response corresponding to 50% of the maximal response of PFOA. The order of IEFs for the PFCs was as follows: PFOA (IEF: 1)>PFHpA (0.89)>PFNA (0.61)>PFPeA (0.50)>PFHxS (0.41)>PFHxA (0.38)≈PFDA (0.37)>PFBA (0.26)=PFOS (0.26)>PFUnDA (0.15)≫PFDoDA and PFBuS (not activated). The structure-activity relationship analysis showed that PFCAs having more than seven perfluorinated carbons had a negative correlation (r=-1.0, p=0.017) between the number of perfluorinated carbons and the IEF of PFCAs, indicating that the number of perfluorinated carbon of PFCAs is one of the factors determining the transactivation potencies of the BS PPARα. The analysis also indicated that PFCAs were more potent than PFSAs with the same number of perfluorinated carbons. Treatment with a mixture of ten PFCs showed an additive action on the BS PPARα activation. Using IEFs of individual PFCs and hepatic concentrations of PFCs in the liver of wild Baikal seals, the PFOA induction equivalents (IEQs, 5.3-58 ng IEQ/g wet weight) were calculated. The correlation analysis revealed that the hepatic total IEQs showed a significant positive correlation with the hepatic expression levels of cytochrome P450 4A-like protein (r=0.53, p=0.036). This suggests that our approach may be useful for assessing the potential PPARα-mediated biological effects of complex mixtures of PFCs in wild Baikal seal population.
Doi 10.1021/es103748s
Pmid 21381677
Wosid WOS:000288841500091
Url https://search.proquest.com/docview/864547088?accountid=171501
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English
Keyword Gene expression; Marine mammals; Proteins; T cell receptors; Studies; Correlation analysis; 2011)
Relationship(s)