Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals

Bhhatarai, B; Gramatica, P

HERO ID

3980826

Reference Type

Journal Article

Year

2011

Language

English

PMID

20958003

HERO ID 3980826
In Press No
Year 2011
Title Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals
Authors Bhhatarai, B; Gramatica, P
Journal Environmental Science & Technology
Volume 45
Issue 19
Page Numbers 8120-8128
Abstract The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).
Doi 10.1021/es101181g
Pmid 20958003
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English